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PREFACE

A survey of the Western World's (non-Communist countries) aeronautical
facilities was undertaken by the Office of Aeronautics and Space Technology
(OAST) as a basis from which to assess NASA's capabilities and that of the
U.S. in aeronautical R&D; particularly in relation to our competitors

in the civil aviation market. This assessment is a continuing one aimed at
underscorinyg where the principal facility strengths and weaknesses exist in
NASA and the U.S. and where future emphasis must be placed to ensure continued
excellence in the research development and testing of future aeronautical
vehicles and systems, and this nation's competitive advantage in the civil
aviation market. An important by-product of this survey was the compilation
of a comprehensive aeronautical facilities catalogue that updated and expanded
on similar efforts undertaken in the past by NASA and others.

This survey and assessment covers wind tunnels, airbreathing propulsion
facilities, and flight simulators. The wind tunnels have been well documented
in the past, although the latest survey was in 1976. Of the propulsion
facilities, engine test stands have also been adequately covered in previous
efforts, although propulsion component facilities have not. To the extent

that this survey could determine, neither have flight simulations facilities. In
all cases, moreover, foreign facilities have only been superficially covered,
if at all, and very little attempt has been made to make a comparison and draw
any judgement on the relative strenygths and merits of thgse facilities nor
where the premier capabilities exist. The present effort covers U.S.
facilities in NASA, the DOD, industry, and academia, plus those of the Western
Worid's nations and Japan. It also attempts to draw comparisons and offer an
indication of the premier facilities in each of the above categories. In addi-
tion, this report includes an assessment of NASA's current strenyths and weak-
nesses, plus a process for addressing its future needs through a long range
facilities plan.

The information gathered in this survey was provided or verified by the
individual facility owners or operators. Owners/operators were given the
option to either include or exclude their facilities as they chose, within the
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criteria given them. Facilities that were identified as "standby" but still
operable have been included in this assessment, since generally the criterion

for "mothballing" a facility is based on workload (use) and not obsolescence

or capability. It was assumed that any of these facilities can be reactivated
within six months. On the other hand, those facilities that were clearly
determined to be decommissioned, in a state of extensive disrepair, or dismantied
have been excluded.

This report is structured into four major sections: one for each of the three
facility categories covered (wind tunnel, airbreathing propulsion, and flight
simulators) plus a fourth one addressing the state of NASA's own facilities
and the outline for a long-range facilities plan, particularly in the aftermath
of the Aero 2000 study. An executive summary, conclusions, and
recommendations, plus appendices containing 1lists of facilities

also are included. This is not intended as a technical report on aeronautical
facilities, but rather as a management level summary containing enough
technical background information on each facility to help the reader
understand the conclusions and recommendations reached herein, and to put them
in the proper perspective.

A team of experts from NASA and the DOD in each of the facility categories
covered by the report was assembled to examine and evaluate the compiled
information, and to provide the overall assessments for their respective
classes of facilities. However, the specific assessment of NASA's
capabilities and needs plus the conclusions and recommendations stated in this
report are the sole responsibility of the undersigned, who is deeply grateful
to the members of this team for their jnvaluable contributions.

Frank E. Penaranda

Chairman

Aeronautical Facilities Assessment Team
Office of Aeronautics and Space Technology
National Aeronautics and Space Administration
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A.

EXECUTIVE SUMMARY

BACKGROUND

A survey of the free world's aeronautical facilities was undertaken as a
basis from which to assess NASA's capabilities in aeronautical R&D in
relation to those of the DOD, U.S. industry, and other countries. This
assessment was in part driven by urgings from the NRC's Aeronautics and
Space Engineering Board (ASEB) and by NASA's Office of Aeronautics and Space
Technology's (OAST) desire to address the question of whether NASA and the
U.S. are adequately facilitated to conduct the caliber of aeronautical R&D
necessary to preserve U.S. supremacy in military and civil aviation.
Summary data from this survey have been included in this document, but more
detailed information is available in a separately published Aeronautical
Facilities Cataloguel,

A recent report under the auspices of the Office of Science and Technoloyy
Policy (0STP)2 also addressed the issue of NASA's and the U.S. Government's
role in Aeronautical R&D and its adequacy to face foreign competition.
However, the question of adequate facilities throughout the U.S. to help
meet this challenge was not sufficiently answered. This assessment attempts
to fill that gap.

Another recent and related activity was the “Aero 2000 Study,"3 desiyned to
address the aeronautical technology needs of the year 2000 as a basis for
determining the correspondiny facility requirements, the adequacy of our
current facilities to meet these requirements and/or the need to plan for
either new or renovated facilities between now and then. That study plus
the present survey/assessment also serve as the data base for building
NASA's long range plans in this critical area.

1. Aeronautical Facilities Catalogue, Vols I & II, NASA RP-1132 and 1133,
1985

2. Aeronautics R&T Policy, Office of Science & Technology Policy, Nov. 1982.

3. Aeronautics Technology Possibilities for 2000: Report of a Workshop.
Aeronautics Technology & Space Engineering Board, National Research
Council, 1984.
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B.

SCOPE

This assessment covers three of the four principal categories of
aeronautical facilities that are considered the most crucial in developing
and maintaining a preeminent aeronautical R&D capability and the healthy
and competitive aviation industry it promotes. The three categories are:

- Wind Tunnels

- Airbreathing Propulsion Facilities

- Flight Simulators

The full spectrum of speed regimes in wind tunnels has been covered,
ranging from subsonics through hypersonics. However, only the major
facilities in each of these regimes have been considered. Small or
pedagogical facilities were excluded. The propulsion facilities included
altitude engine test stands as well as propulsion component facilities.
Sea level test stands, because of their limited capabilities, were
ignored. The flight simulators considered were those versatile enough to
be used for research purposes. Trainers and small single purpose “cabs"
were left out,

The fourth category, Numerical Simulation facilities (large computers),
was left out of the current assessment because there are very few in
existence or under construction and these are well known. The NASA Ames
Numerical Aerodynamic Simulation facility (NAS) will be the premier
facility in this category when it becomes operational in 1987. Central,
general purpose ADP facilities or complexes, although essential in
supporting aeronautical R&D, have not been included., Dedicated ADP/EDP
mainframes, CPU's, etc., have been included as integral parts of the
facilities they support, but have not been singled out as specific
capabilities.

A1l the major installations of NASA and the DOD, U.S. industry, and
academia were surveyed and covered in this study, as were the major
foreign installations in the free world such as Canada, France, West
Germany, the Netherlands, United Kingdom, and Japan. Good responses were
received from wind tunnel owners/operators, domestic and foreign, and
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those are well represented. There is also good coverage of domestic
propulsion and flight simulation facilities. However, foreign responses
were only fair for engine test facilities and very marginal for component
facilities or flight simulators.

SUMMARY FINDINGS

C-1 WIND TUNNELS:
About 200 wind tunnels meeting the criteria established for
this assessment across all speed regimes were evaluated. Table I-a
shows the distribution by speed regime and country. These figures
indicate that the U.S. ownership of major wind tunnels far exceeds

those of all other countries combined. This is also true for any
individual speed regime, particularly hypersonics. The U.S. capital
investment (replacement value) in these tunnels is at least

$3 billion. No information on the foreign investment is available.

More important than sheer numbers, of course, is quality or
capability. By this measurement also, the U.S. is judged to have the
edge, particularly in the high speed tunnels. However, many foreign
tunnels, being newer and incorporating the latest technology, are
more productive and offer conveniences not found in the older

U.S. facilities; principally in the subsonic tunnels. More specific
observations are as follows:

a. Subsonic Tunnels: The U.S. (NASA) owns the two larygest tunnels:
Ames' 40x80x120 and Langley's 30x60; however, the Netherland's
DNW offers large size, interchangeable test sections, and a very
modern and productive facility. France's F1, the U.K.'s 5M, the
Japanese 6M, and Canadian 30 ft tunnels are equally noteworthy.

Other than size, foreign facilities are quite comparable to the
U.S.'s, although the latter has the edge in propulsion wind
tunnels (NASA and industry) and in icing facilities, especially



when the proposed Altitude Wind Tunnel at NASA Lewis comes on
1ine around 1990.

Transonic Tunnels: With the initial operation of NASA Langley's

National Transonic Facility (NTF), the U.S. clearly owns the
superior Reynolds number capability in this speed regime.
Moreover, it is also the leader in transonic propulsion and
propulsion simulation facilities with NASA, DOD, and industry
tunnels. The DOD is clearly the leader with AEDC's 16T facility.

The U.S.'s transonic tunnels are probably the busiest in the

world, with Langley's 16T and Ames' 11ft tunnels having 2 to 3 year
backlogs, and Calspan's excellent 8 ft facility as the

U.S. industry's workhorse. Although not as heavily utilized as

the U.S. tunnels, there are some very excellent foreign

facilities in France's S-1, and the U.K.'s 8 ft tunnels.

Other than NASA Langley's NTF, reasonable Reynolds number
capability in this speed regime is well distributed throughout

the U.S. and foreign tunnels, with the group of 4 ft
trisonic/polysonic tunnels being the leaders in this category.
Although primarily concentrated in U.S. industry, the latter are
also available in such countries as the U.K., India, Israel, Korea,
and Taiwan, providing their owners with good capabilities.

However, since these are high pressure, intermittent blowdown
tunnels with short run duration, the larger continuous flow
tunnels of Ames, Langley, and AEDC are the most utilized.

Supersonic Tunnels: Overall, this speed regime is well covered

by domestic and foreign tunnels. The U.S. (NASA and DOD) owns the
largest tunnels, while the U.S. industry has the highest Reynolds
number capability, particularly in their 4 ft polysonic

tunnels. Except for size, foreign tunnels are roughly comparable
to the U.S.'s, providing average maximum Reynolds number
capability. Supersonic tunnels are also very active, with
considerable backloys in the more popular facilities; especially
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the NASA Unitary Plan tunnels. However, many of these highly
used facilities are getting very old and showing their age in
maintenance and repair time. The Unitary tunnels (in particular)
are over 30 years old and suffer from antiquated technology

and Tow productivity.

d. Hypersonic Tunnels: One of the most neglected areas of research
in recent years has been in the hypersonic speed regime, with the
attendant impact on these research facilities. As a result, many

hypersonic tunnels are now on standby or dismantled, principally
in the U.S. industry. Nevertheless, the U.S. facilities still
dominate this speed regime, whether in size, Mach number range,
or maximum Reynolds number capability. Foreign facilities are
much fewer in number and generally of lesser capability.

C-2 AIRBREATHING PROPULSION FACILITIES:

About 120 propulsion facilities covering the entire spectrum from
propulsion wind tunnel, through engine test stand and components
research facilities were surveyed and evaluated. Table I-b shows the
distribution by category of facility and country, indicating a marked
concentration of these facilities in the U.S., representing a capital
investment (replacement value) of at least $3 billion. No comparable
information on the foreign investment is available for propulsion
facilities either, but there are some excellent engine test
facilities in other countries; particularly in the U.K. On the other
hand, very little information was made available on engine component
facilities, and what there is indicates that the U.S. owns the
preponderance of these facilities with 1ittle competition from
abroad. The situation appears very similar in the case of propulsion
wind tunnels. More specifically:

a. Propulsion Wind Tunnels: There are not many true propulsion wind

tunnels available and as indicated above, these are mostly in the
U.S.. The principal U.S. capabilities are at NASA Lewis and
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DOD's AEDC. Canada, France, and the Netherlands are the only
other countries with some notable capabilities in this area.
Propulsion simulation tunnels, where high pressure air or exhaust
is used to simulate the engine burn, were not considered in the
comparison. The latter are used for propulsion/airframe
inteyration research (aerodynamics), where the engine propulsion
characteristics need only to be simulated. True propulsion/
airframe research and testing capabilities that allow for real
engine burns and provide the necessary environmental conditions
(altitude and temperature variations in the full range of the
flight envelope) are not available today in any of the free
world's facilities. The proposed Altitude Wind Tunnel (AWT)
facility at NASA Lewis is designed to fill this need in the high
subsonic region.

Engine Test Facilities: These facilities were categorized into

four groups according to mass flow, speed, and size: (1) high
bypass, high flow, turbofan engines; (2) large turbojet, small
high bypass, and lTow bypass turbofan engines; (3) medium and
small turbojet engines; and (4) free jet facilities.

(1) High Bypass Turbofans: The premier capability exists in the
U.S. at the Arnold Engineering Development Center's (AEDC) .
new ASTF facility. This American capability is backed by
excellent facilities at Pratt & Whitney (E. Hartford).
OQutside the U.S., capabilities in the Western World are
limited, with the only large facility in this category at
the U.K.'s RAE-Pyestock Test Cell 3W. Based on the
information obtained, the French do not appear to have a
comparable capability. NASA does not have any capability in
this category, and probably will not since this area is well
covered by DOD and industry, and indications are that the
direction of current research is toward high performance
supersonic engines rather than large subsonic transport
turbofan engines.




(2) Large Turbojets, Small High Bypass and Low Bypass Turbotan
Engines: The premier capability for this class of
facilities is also in the U.S., primarily at AEDC's ETF and
ASTF facilities. This position is further strengthened by
substantial capability in the U.S. industry (P&W and G.E.),
and the U.S. Navy (NAPC) and NASA. Outside the U.S., France
has a very good capability in Saclay (CEPr), and the U.K. at
Pyestock.

(3) Medium ana Small Turbojets: The capabilities in this
category are evenly distributed throughout the Western World
with no clear advantages evident in any single country.

(4) Free Jet Facilities: The Targest free jet facility will be
in the U.S. at AEDC when the ASTF free jet capability is
operational around 1987. Other good U.S. capability exists
at the Marqguardt Company. In Europe, these facilities are

primarily in England (7) and France (5), for a well

distributed capability throughout the Western World. NASA
does not own any free jet facilities, but instead relies on
its Targe propulsion wind tunnels for this type of testing.

C. Propulsion Component Research Facilities: This category includes

turbines, compressors, and combustor facilities, with the

U.S. industry owning the major share of the world's capability,
followed by NASA and DOD. Universities own mostly small-scale
fundamental research facilities and rigs. The U.S. industry
application of these facilities is mostly developmental and
proprietary, while NASA's is for basic and applied research.
Although the response from this survey by foreign installations
was minimal, general knowledge of the foreign capability in
component facilities indicates that except for the U.K.'s Rolls
Royce and RAE-Pyestock facilities, this type of capability is
limited in the other European countries. The Japanese, however,
are building some impressive capabilities, particularly in the
combustor research area. Despite the U.S. industry's overall
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supremacy in this category, NASA does own or is in the process of
obtaining some unique research facilities, such as Lewis' High
Pressure/Hot Section (HPF), Small Warm Turbine, and Large Low
Speed Centrifugal Compressor facilities.

C-3 FLIGHT SIMULATORS:

Unlike other aeronautical facilities that have been around for
decades, Flight Simulators, which depend very heavily on
sophisticated electronic data and control systems, are a relatively
young class of facilities and not as numerous as their wind tunnels
or engine facilities counterparts. This is particularly evident with
the R&D type of Flight Simulators on which this assessment focused.
Of the roughly 85 candidate facilities reviewed, about 50, with a
replacement cost of over $500 M, satisfied the criteria established
for this survey and have been included in this evaluation. Most of
these are in NASA and industry, with very few in foreign
installations. Table I-c shows the distribution by owner. The U.S.
is the undisputed leader in this category of aeronautical facilities,
although some good capabilities exist in the U.K., France, Germany
and Japan, with the latter currently building modern and very capable
facilities. The U.S. leadership is generally across the board 2nd
resides mostly in the aircraft industry, although NASA owns the
premier facilities in motion simulators with Ames' Vertical Motion
Simulator (VMS) and Flight Simulator for Advanced Aircraft (FSAA).

Four classes of simulators were established for comparison:

(1) Airborne Simulators; (2) High-Performance Aircraft (air-to-air)
Simulators; (3) Vehicle-Specific Flight Decks; and (4) Generic Flight
Decks. Pilot trainers and similar-type simulators such as those

used extensively by airliners were excluded from this assessment.

a. Airborne Simulators: There are very few facilities classified in
this category. The U.S. owns two exceptional ones with NASA
Langley's Terminal System Research Vehicle (TSRV) and Calspan's
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Total In-Flight Simulator (TIFS). The former uses a Boeing 737
and the latter a C-131 aircraft. The premier facility, however,
appears to be the Advanced Technologies Testing Aircraft System
(ATTAS), scheduled to be placed in operation by West Germany's
DFVLR in 1986. This facility will have the combined capabilities
of the TSRV and TIFS, plus the ability to simulate air traffic
for ATC system studies.

High Performance (Air-to-Air) Simulators: These are primarily

used for high-performance aircraft with large fields-of-view.
McDonnell Douglas, St. Louis, has the best overall capability in
this category with their Manned Air Combat Simulators (MACS).
There are also significant capabilities in Germany, France, and
the U.K. NASA's only capability in this area is Langley's DMS,
which was one of the first simulators of this type and is now
relatively obsolete.

Vehicle-Specific Flight Decks: As the title implies, these

facilities are designed for the developmental needs of a specific
type of aircraft, and therefore intercomparisons are very
difficult. Nevertheless, Boeing is judged to have the best
overall capability with current state-of-the-art system, followed
by McDonnell Douglas. The Europeans also have excellent
facilities in France and the U.K., and the Japanese are in the
process of building some very good modern facilities,

Generic R&D Flight Decks: The majority of the R&D simulator

facilities fall into this category. Comparisons in this group
also are difficult because these facilities are usually designed
to investigate a specific area of simulation such as motion,
visual systems, ATC, etc.. Comparisons for each of these areas
are given in the body of this report. Overall, NASA Ames has the
best motion facilities with their Vertical Motion Simulator (VHS)
and Flight Simulator for Advanced Aircraft (FSAA). Excellent
visual capabilities employing the latest Computer Generated
Imagery (CGI) systems with full-color capabilities are available
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at Ames and the major U.S. aircraft companies. In addition, the
U.S. FAA owns the best ATC research facilities, with good capabili-
ties also available at NASA (Ames and Langley).

This category of facilities is the most susceptible to obsolescence

due to its critical reliance on continually advancing electronics and

computational systems. The U.S. older facilities, therefore, are

very vulnerable to being surpassed in capability by the newer ones

being built overseas, particularly in Japan. For example, some NASA
facilities at Ames (FSAA) and Langley (DMS) are over 10 years old
and in serious need of upgrading.

C-4 NASA'S CAPABILITIES AND NEEDS

d.

Wind Tunnels: Of the 39 major wind tunnels owned by NASA, 18 are

considered World Class and 9 are at least National (U.S. Class)
facilities. This capital investment, with a current replacement
value of around $1.4 billion, represents a principal asset in the
Nation's wind tunnel capabilities across all speed regimes.
However, these premier facilities average about 30 years of age,
and at least 11 (with a capital value of about $450 M) are in
need of major rehabilitation or upgrading within the next 15
years; some as urgently as the next 5 years.

Airbreathing Propulsion Facilities: Almost all of NASA's

airbreathing propulsion facilities (with a replacement value of
about $690 M) are at Lewis. Only four are considered World
Class: one wind tunnel and three propulsion component
facilities. Lewis' principal engine test facility, the
Propulsion Systems Laboratory (PSL), suffers from air flow
Timitations but is still of National quality. NASA's principal
strength in this category is its overall research rather than
test capability. Some major rehabilitation needs are also
indicated for this group of facilities.
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¢. Flight Simulation Facilities: Of the 11 major flight simulators
owned by NASA, with a current capital value of about $85 M, four are
considered World Class and two more could be returned to that status
with some rehabilitation or upgrading. These two are the FSAA at
Ames and DMS at Langley, each about 15 years old. NASA's principal

strengths in this field are its large motion systems and advanced
research cockpits. However, in this rapidly advancing technology,
facilities may become obsolete very rapidly unless constantly
upgraded.

CONCLUSIONS AND RECOMMENDATIONS

The U.S. is clearly the current leader in aeronautical facilities with NASA,
DOD, and industry playing significant roles across the three main categories

of facilities. However, although the U.S. may be considered well facilitized
today, some of its premier capabilities are quite old and will need
rehabilitating/upgrading in the next few years. Careful attention also must
be given to future requirements to meet the technology needs of the next
century, so that today's preeminence in aeronautical R&D can be maintained.
As a result of the current assessment and the Aero 2000 Study, NASA and the
DOD are examining their respective facility needs for this timeframe and
constructing Facility Long Range Plans. These plans will examine the need
for upgrading current capabilities as well as constructing new ones. An
eventual coordination of these plans between NASA, DOD, and industry advisors
will be necessary to ensure that the country's future needs are properly
addressed and satisfied.

The questions of facility deactivation and the role of test facilities versus
numerical simulation methods also have been addressed. The opinion is that
it is impractical to generate long range facility deactivation plans and that
near term, almost ad hoc decisions (for reasons cited in this report) are
more effective. It is also believed that numerical simulation methods will
not attain the degree of sophistication and accuracy required to eliminate
the need for large test facilities, nor for the basic research type. The
continued role of the medium size wind tunnels, however, is questionable.

- 11 -



‘oluosIedng pue SruOsUel], Y1Oq Se PAPN[OUT S[PUUN} PUlM UOTID8s 1581 adiinw JO dIUOSA[Og JO Jequnu 8y} sjuasaiday ( )

(ST) 102 6% (s1) 8¢ (S1) 8% 9L TV.LOL
(¢) L2 ¢ (€)9 (2)s ¢1 wopbury panun
v - I 1 Z SpuepayiaN
(Z) 91 I (2) ¢ (2)s L uedep
(1) 11 1 (e (v 7 Auewiac)
(2) 81 7 (z) ¢ (2) 9 g soued,]
(s - (D1 (N1 ¢ epeue)
(6) 18 6 (6) 91 (6) 2e ve NOITIOA
01 - - - 01 elwepesy
(9) 05 zZ1 (9) 8 (9) ¢1 L1 Ansnpujg
81 L 9 ¢ Z aod
7 11 8 01 ¢l VSVN
(9) 021 08 (9) zz (9) 9z w SALVIS dALINN
e101, otuostadAy oruosiadng oruosuel], smuosqng uoneso]

NOILNAIY.LSIA STINNNL ANIM HOIVIN

B-T HdTdVYL




0c1 £9 LS 01 10l

8 - 8 - wopbuly pajiun

I - - T Spue|J3y3ap

8 L ! - uedep

1 - 1 - Auewuay

S - ¥ 1 adueua 4

4 - 1 T epeur)
e 1 ST € [CIERLE]
¢ 2 - - e Lwapedy
9 €2 22 1 Au3snpug
12 £ 91 2 aod
92 81 '/ s YSUN
G6 oy k23 L SALVLS A3LINN
el FERE ST S

NOILNGIYLSIA SITLITIIVA NOISINAOYd ONIHLYIUGYIV
q-1 378Vl




2§ L2 1 8 9 10L
! - - 1 - wopbuiy pajLun
T 1 - - - Spue|J43y3apN
b 1 4 1 - uedep
v 1 - 1 2 Auewuaay
1 - - 1 - doued 4
I _ _ - 1 epeue)
21 € 2 2 € NDI3Y04
0¢ 11 L 14 - Kaasnpui
8 S - 1 Z aoa
22 8 4 1 1 VSN
oy 7 6 v € S3LVLS Q3LINN
Le30L $323@ JubLLd $393Q JublLld 1JeA04LY 3U0quLY
IWETIEL) oL 4109dg BLDLY3A 4494 UBLH

NOILNGIYLSIA SITLITIIVA NOILVINWIS LHIIA

3-1 378vl

14




08°9

SL°T
v0°€
I1°¢
Le30]

Sal3LLloey/swayshs £ ddns uie [euquad 40J 3jewLlsa
UB 3pN|duL Ing s{auuny puLM apn|oxa S9L3L[Loe 4 uois|{ndouq -

"JUBWSSISS® SLY3 UL PBUSAOD SBLIL|LORy
950U} 404 ALuo Jun0dde A3Yj BOULS SALFRAUBSUOD BuR S9jeWL]S] -

*$ ¥86T UL pajels san|eA ajewixoudde aue 9say] -

0s* G'¢ 0°¢
e - 1
gz’ "1 v*
129 8'1 '1
[N 9° vl
SA07B | NULS SaL3rLtoeg s|auunj
ybL| 4 uors|ndouy PULM
(9¢)

SIILINIIVA WOLLNYNOYIY °*S°N NI INIWLSIANI JLYWIXO0¥ddY

P-1 379v1

eLWBpRIY
Ka3snpug
aoa

YSYN

-15-



1.0

1. WIND TUNNELS

INTRODUCT ION

About 200 wind tunnels meeting the established criteria across

all speed regimes in the U.S. and throughout Western Europe and Japan
were evaluated in this assessment. The speed regimes covered and the
acceptance criteria were the following:

MINIMUM TEST SECTION

SPEED REGIME SIZE (ft) MACH #
Subsonic 6 . 1
Transonic 4 -
Supersonic 2 1.2 - 3.5
Supersonic 1 3.5 - 5.0
Hypersonic 1 5.0

Only active or standby tunnels were considered. Decommissioned or
mothballed facilities in need of major repairs for reactivation were
not. Multiple speed tunnels, such as trisonic/polysonic tunnels and
those having interchangeable nozzle and/or test sections to achieve
several discrete speed ranges, have been included in each of the
applicable speed regime groups (multi-listed). Refer to Table I-a for
the distribution of the wind tunnels considered, by country/owner and by
speed regime, Figures 1 to 4 show this comparison graphically.

Traditionally, comparison of wind tunnel test capabilities has been
based primarily on size, Mach number, and Reynolds number range;
characteristics which are readily available and quantifiable. The
criteria used in the current assessment have, at least qualitatively,
also considered other factors such as flow quality, productivity (rapid
and efficient test section access and model preparation),
instrumentation, etc., at least to the extent that this information is
available or known by the Assessment Team members.

- 16 -
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1.1

Only tunnels within each speed regime were compared. In some cases, as
with the Subsonic group where the wind tunnel population is large,
several subgroups were created to make the comparison more meaningful.
Tables of these groups or subgroups, with the tunnels listed in a
hierarchical order of capabilities, are included and discussed under each
of the speed regime subsections. Additionally, a cross-index of all the
tunnels, listed by installation and speed regime, is included in
Appendices A to E.

SUMMARY ASSESSMENT

Overall, the U.S., through its various Government laboratories and
aviation industry, has the superior capability in wind tunnel
facilities. It owns the largest tunnels and those with the highest
Reynolds number capability and broadest speed range. However, it also
has the oldest and most antiquated facilities, in contrast to the newer,
more productive tunnels of the Europeans.

Of the U.S. facilities, NASA's span the full spectrum of wind tunnels,
with an emphasis on research capabilities where it is virtually
unequaled. On the other hand, DOD's strength is based primarily on its
large test facilities at AEDC, which are used principally for devel-
opment rather than research purposes. The U.S. industry capabilities
also lean heavily toward development and are often restricted for its
owners' proprietary use. However, some facilities, such as Calspan's
8-ft. transonic tunnel, are widely used and have become the workhorses of
the industry.

The Europeans have some very good facilities in the subsonic through
supersonic range with their showpieces being the 5 meter tunnel in the
U.K., the DNW complex in the Netherlands, and the F-1 in France. These
facilities are all very modern and contain state-of-the-art technology and
high-productivity features. Generally, they are well facilitated in all
the speed regimes except hypersonics. In the transonic region, they are
attempting to generate a consortium of nations for the purpose of
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1.2

building a European equivalent of the NTF, which would be called the ETW
(European Transonic Wind Tunnel). However, this project is still in
the negotiation stages and is at least 5 to 10 years in the future.

Although the U.S. currently holds the overall advantage in these
facilities, many of the most utilized ones (such as NASA's Unitary Plan
tunnels) will be nearly 50 years old hy the year 2000. Considering

the 10 to 15 years it takes from the conceptual to the operating stages of
these large and costly facilities, serious attention must be given now to
the future of the Nation's existing tunnels and to plans for either
rehabi]itating them or building new ones within the next 15 years if the
U.S. is to hold its competitive edge. This is especially true in the
high-speed tunnels, particularly Hypersonics.

Figures 5 to 8 summarize the premier facilities in each of the speed

regimes with respect to size, Reynolds number capability, Mach number
range, propulsion, and special features.

SUBSONIC WIND TUNNELS

Of the hundreds of subsonic wind tunnels in the world today, most are
small with characteristic test sections smaller than 6 feet (~2 meters)
and speeds less than Mach 0.2. While it is recognized that many of these
facilities are used for fundamental research and/or pedagogical purposes,
they do not represent the principal capabilities in low speed
aeronautical R&D, and with few exceptions, have not been included in this
assessment. Also, most of these tunnels have been grouped and evaluated
mainly according to size and speed, although tunnels with special
features such as propulsion, icing and pressure capabilities have also
been identified and compared separately.

Ten groups based on the above criteria were created to differentiate
those tunnels having sufficient commonality to be characterized as
comparable. A11 tunnels were accommodated within one of the given
groups, and except for those listed as having acoustical test
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capabilities, no tunnel appears in more than one group. Moreover, the
tunnels within each group have been listed in decreasing order of
capability (mainly size).

Group Characteristics
A >30 Ft
B1 12 - 30 Ft; Max Mach #>0.2
B2 12 - 30 Ft; Max Mach #<0.2
C 8 - 12 Ft
D >8 Ft
E Pressurized
F Propulsion
G Vertical Spin
H Acoustical Test Capabilities
J Unique Features

GROUP A: In this group of the largest wind tunnels in the world, the
U.S. owns all facilities. The Ames 40x80x120 complex is the major
V/STOL and helicopter test facility, while the Langley 30x60 tunne]
permits full scale general aviation aircraft testing and provides a
unique "free-flight" tethered model testing capability.

GROUP B1: This group of large sized tunnels represents modern,
state-of-the-art facilities built to support powered, V/STOL model
tests and to obtain force and moment measurements. The
Netherland's DNW tunnel is the premier facility in this category,
capable also of providing acoustic testing and good flow
characteristics for flow field surveys and vortex flow
measurement. The Langley 4x7 meter and the Boeing-Vertol
20x20-ft tunnels also offer good flow qualities, followed by the
Lockheed-GA 16x23-ft and the Japanese NAL tunnels. The U.S. and
foreign capabilities are about equal in this category.

GROUP B2: These tunnels are similar in size to those in Bl, but with
speeds usually less than Mach 0.1. Many of these are actually
V/STOL test sections built in tandem with smaller test sections

- 24 -




where the bulk of the tunnels' work is conducted (Group C). Flow
quality for these big tunnels is generally poor and their overall
capabilities are not considered critical in the U.S./foreign
technology balance.

GROUP C: This very large group of moderate sized tunnels provides the
"workhorse" facilities for industry's unpowered model configuration
test and development and for government/university fundamental
investigations. While there are many capable facilities in this
group, these are uniformly spread in the U.S. and abroad, and no
particular facility or capability clearly rises above the others.

GROUP D: This group of more modest facilities is representative of the
very large population of small subsonic tunnels in the world
today. These are generally of moderate cost, available mostly in
academic institutions and small research establishments, and do not
represent unique or premier facilities. These too are evenly
distributed between foreign and domestic installations with no clear
advantage on either side.

GROUP E - PRESSURE TUNNELS: The tunnels listed in this group represent
the most advanced subsonic wind tunnels with respect to flow
quality, Reynolds number, and generally versatile test
capability. The premier facilities are the French ONERA F-1, the
United Kingdom's RAE 5 meter, and the NASA Ames' 12-ft tunnels.
The French and British tunnels have an edge in that they are more

modern and capable of higher productivity due to their more
efficient test section set-up and rapid change features. The Ames'
12 ft is one of the most heavily utilized facilities but has very
cumbersome model/experiment preparation procedures and is in need
of rehabilitation with more modern equipment and test section
access features. The foreign capabilities are superior to the
U.S. capabilities in this category.

GROUP F - PROPULSION TUNNELS: These three facilities represent the
subsonic members of a very small group of "true" propulsion wind
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GROUP

tunnels (those able to handle the combustion products of real
engine burns, as opposed to propulsion "simulation" tunnel where
engine air flow is simulated with high pressure air). The U.S.
owns the best capabilities in this category, but this capability is
very limited. A larger, higher speed altitude simulation facility
is necessary to conduct full scale, complete propulsion
system/airframe integration research and testing. This is
especially crucial in the development of sophisticated
propulsion/airframe systems such as those of future V/STOL or
turboprop aircraft.

G - VERTICAL FLOW SPIN: These are very specialized facilities, few

GROUP

in number and distributed evenly among the U.S., France, and Japan.

H - ACOUSTICAL TEST CAPABILITIES: This list represents those

GROUP

tunnels in the other groups that have the capability to perform
acoustical (noise) experiments through either removable or
permanent acoustical treatment of the test section and/or tunnel
walls. These facilities are particularly important in V/STOL and

turboprop R&D. This capability is broadly distributed abroad and
domestically.

J - UNIQUE FEATURES: This 1list includes tunnels whose unique

capabilities warrant special consideration. The features listed are
principally cryogenic or icing capabilities. The former is a rare
feature in subsonic tunnels, while the latter is a rare and
specialized feature, period. There are very few icing facilities in
the free world and NASA Lewis' Icing Research Tunnel is the largest
and most capable. The French S-1 in Modane can be adapted with an
icing mechanism, but being an atmospheric tunnel it depends on cold
weather for its ice-making capabilities. This is at best an
uncertain feature with noncontrollable, nonreproducib]é

conditions. Table Il Tist the tunnels in each of the above groups.
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TABLE II1

HIGH REYNOLDS NUMBER SUBSONIC TUNNELS

Tunnel Location R cX 10
Low Turbulence Pressure NASA-Langley 30
40 x 80 ft NASA-Ames 17
High Pressure (HDG) Germany-Géttingen 12
12-ft Pressure NASA-Ames 10
80x120 NASA-Ames 9.8
Cryogenic Japan—Tsukuba 9.8
5m U.K.—RAE Farnborough 7.8
KKK Germany—DFVLR, Ké&ln-Porz 7.8
F1 France-ONERA Fauga 7.3
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1.3 TRANSONIC WIND TUNNELS

Unlike subsonic tunnels, the population of transonic facilities covers a
much narrower range of size and, of course, speed since the primary focus
of the latter is in the transonic region (M=0.8-1.2). On the low side,
size is limited to tunnels with test sections larger than 4 ft, while on
the high side the number of large facilities are limited to the three

16 ft tunnels in the U.S. and the 26 ft S1 tunnel in France. 1In all, 48
facilities were evaluated, 26 in the U.S. and 22 abroad.

Transonic wind tunnels can be categorized into two major groups:
2-dimensional (2-D) and 3-dimensional (3-D) tunnels. The former are
facilities with very narrow (2-dimensional) test sections and involved
principally in airfoil research. There are relatively few of these. The
latter encompass the majority of the transonic tunnels, and for purposes

of this assessment, have been divided into three subgroups based on
size:

3-Dy Larger than 10 ft
3-D, 7 to 10 ft
3-D3 Less than 7 ft

The corresponding tunnels are listed in Table IV.

Research and testing in the transonic region is particularly sensitive to
good flow quality and high Reynolds number capability. Sufficient size
to properly instrument a model and measure the desired parameters is a
minimum requirement. This is considered to be at least 4 ft. However,
the optimum test section size for transonic tunnels is in the 8 to 11 ft
range, which provides adequate size for measurements at reasonable model
costs and/or operating costs. This size also can provide high Reynolds
numbers under cryogenic conditions, such as with Langley's NTF. The
larger size tunnels do provide advantages at near sonic conditions, where
wall interference effects are pronounced, by increasing the test section
to model size ratio sufficiently to minimize these effects.
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1.3.1 SIZE

In terms of size, the tunnels grouped under 3-D1 represent the top of the
1ine, and except for France's S-1 (26 ft), these all belong to the
U.S. Government (NASA and AEDC). In the mid or "optimum" sized range,

the tunnels listed in groups 3-D2 are owned mostly by the U.S. and the
only foreign tunnels are owned by the U.K. The smaller tunnels (3-D3)
are evenly spread in the U.S. and abroad, with the U.S. tunnels owned
principally by industry.

1.3.2 REYNOLDS NUMBER

In this category, the U.S. is the undisputed leader with NASA Langley's
NTF. This new, cryogenic facility provides an order of magnitude
increase in the Reynolds number capability heretofore generally available
(120 vs. 10x108y 4t an optimum size of 8 ft. The Europeans are
entertaining the possibility of building a similar facility through a
consortium of nations (France, Netherlands, Germany, and the U.K.).
Although a site has been selected (Koln, West Germany), an operational
facility is still 5 to 10 years in the future. The next best Reynolds
number capability resides in the group of 4 ft trisonic or polysonic
tunnels designed by Fluidyne and dispersed throughout the U.S. industry
and some foreign countries including India, Korea, and Taiwan. Table V
1ists the leading high Reynolds number tunnels, and Figure 10 plots the
data against size. Overall, the U.S. has the most capacity and
flexibility in this area, although the Canadians and Europeans also have
good facilities,

1.3.3 FLOW QUALITY

Quantifiable data for comparing this characteristic was not readily
available. However, the "good" facilities are generally well known by
researchers in this field. The recently modified Langley 8-ft Transonic
Pressure Tunnel (TPT) is judged to be the premier facility in this
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category.

Other than this standout, the qualitative data available

indicate that there is a wide variation in flow quality throughout the
U.S. and foreign facilities, with no clear edge enjoyed by either side.
The general inference is that the flow quality in most transonic tunnels
is marginal and that further improvements in facility design with

subsequent rehabilitation of many existing facilities is needed.

TABLEV

HIGH REYNOLDS NUMBER TRANSONIC TUNNELS

Tunnel Location R,c X 10¢
NTF NASA -Langley 120
High R, NASA-Marshall 53
4-ft Polysonic McDonnell Douglas—St. Louis 20
1-m (TWG) Germany — DFVLR, Géttingen 16
4-ft High Speed Vought 15
NAE 2-D Canada—-NRC 14
0.3-m NASA-Langley 14
TDT NASA-Langley 14
7-ft Rockwell —Los Angeles 13
NAE 3.-D Canada-NRC 12
4-ft Trisonic Lockheed —California 12
4-ft Trisonic McDonnell Douglas—El Sequndo 12
Compressible Flow Lockheed—Georgia 11
S5-1 MA France—-ONERA, Modane 11
16-ft DOD-AEDC 10
11-ft NASA-Ames 10
8-ft Calspan 10
1.2-m India—Bangalore 10
4 x 4-ft United Kingdom-Warton 10
8-ft United Kingdom—-Bedford 9

R, =R wherec = 1/10 /A
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1.4 SUPERSONIC WIND TUNNELS

About 40 supersonic wind tunnels (including 15 with multiple speed

test sections which also are counted as transonics) meeting the set
criteria of 2 ft and Mach 1.2- 3.5, or 1 ft and Mach 3.5-5, were examined
in this assessment. The population is almost equally divided between the
U.S. and foreign, with the U.S. having a slight edge in numbers. Unlike
the subsonic and transonic tunnels which were amenable to groupings, the
supersonic tunnels were compared on an individual basis to account for
the many factors and individual facility characteristics influencing the
comparisons in this speed regime.

Overall, the U.S. (NASA and DOD) owns the largest supersonic wind
tunnels, with U.S. industry having the highest Reynolds number
capability, particularly in their 4-ft polysonic tunnels. Except for
size, foreign tunnels are roughly comparable to the U.S., providing
maximum Reynolds number capability near the average for this speed
regime. This is also a very active set of wind tunnels with considerable
backlogs in the more popular facilities, especially the NASA Unitary Plan
tunnels. The latter, however, are over 30 years old and are

suffering from antiquated technology and low productivity. Specific
observations on size, Reynolds number, and flow quality follow.

1.4.1 SIZE
The largest U.S. tunnels are the supersonic propulsion tunnels at AEDC
and NASA Lewis (APTU, 16S, 10x10, and 8x6 ft) plus the Unitary Plan
Tunnel at Ames (9x7 and 8x7 ft). The largest foreign facility in this
category is the U.K.'s 8 ft tunnel, followed by the French S2-MA (~6 ft),
and the Canadian NAE 5x5 ft tunnels. Table VI Tists the tunnels in this
category according to size and comparable capabilities.
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1.4.2 REYNOLDS NUMBER

The best Reynolds number capability in this speed regime is available in
the group of 4 ft polysonic tunnels owned mostly by the U.S. industry and
some foreign countries such as the Netherlands, the U.K., and India. Table
VII identifies those tunnels with the highest Remax’ and Figure 11 plots
this value as a function of test section size. This graph illustrates
that although NASA and DOD facilities are the largest, the U.S. industry
and some foreign facilities provide much higher Reynolds numbers.

1.4.3 FLOW QUALITY

The elements affecting flow quality in the high-speed tunnels are
inherently different from the low speed ones. The latter are influenced
by fan noise and turbulence occurring upstream of the test section
nozzle. The former are affected principally by the turbulence noise
generated from the nozzle wall boundary layer, which for the more
conventional type of supersonic tests involving mostly force and pressure
measurements on relatively simple aerodynamic shapes, can be ignored
altogether. Moreover, the Mach number variations across a test section
are usually well mapped and appropriate corrections are available for test
results so as to compensate for these irregularities. For these reasons,
flow noise characteristics of supersonic tunnels have generally not been
well determined nor documented, and there's little data available for
significant comparisons.

Overall, most of the supersonic tunnels surveyed offer adequate flow
characteristics for conducting the more traditional type of research and
testing. No premier facility stands out, not even NASA's Unitary Plan
Wind Tunnels. However, as interest in the more complex aerodynamic shapes
of future vehicles increases, the effects of flow noise on boundary layer
thickness and laminar flow transition will be critical. Quiet, low
disturbance supersonic tunnels will be a necessity. At this time, no

such tunnels exist anywhere except for a small pilot facility at Langley.
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1.5 HYPERSONIC WIND TUNNELS

The tunnels covered under this category are those providing speeds

greater than Mach 5 and test section sizes of at least 12 inches. Thirty-
nine tunnels met this criteria and were compared in this assessment. Of
the four wind tunnel categories, the hypersonics are probably the most
unique and varied in desiyn and capabilities, and therefore in
application. There are two principal types of tunnels: the continuous
flow or relatively long duration blow-down tunnels, and the "impulse"

or very short duration tunnels (shock tunnels, Ludwig-tubes, etc.). The
first group provides runs that are either "continuous" or in the 10 to 100
second range. The impulse tunnels, on the other hand, provide run times
on the order of tenths or thousands of a second. Most of the tunnels
covered in this assessment, however, fall in the first category since the
impulse tunnels are either too small to fit the set criteria, or are no

longer operational.

Because of the wide range of flow conditions encountered in hypersonic
flight, it is extremely difficult to simulate them all in any single
tacility. Mach number, Reynolds number, temperature, and pressure are
critical parameters that must be properly simulated in the laboratory to
represent true flight conditions. Unfortunately, some of these
parameters, such as temperature and Reynolds number play against each
other making the simultaneous creation of a high temperature, hiyh
Reynolds and Mach number environment an almost impossible demand of any
single ground-based facility; at least of the ones currently available.
For this reason, hypersonic facilities have been designed to cover some
specific aspect of this flight regime, such that Mach and Reynolds
numbers are duplicated as realistically as possible in one type of
tunnel; heat loads are studied in specialty tunnels equipped with arc jet
heaters; and real gas effects in high enthalpy facilities. Consequently,
except for being generally labeled under one of the two basic categories
defined above, this assessment considered each hypersonic facility
individually in making comparisons.
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Overall, the U.S. has a clear advantage in this speed regime. Good
facilities exist in industry and in government laboratories, with the
premier, active facilities being at AEDC, NASA Langley, and Calspan,
Langley has the distinction of owning a hypersonic complex that offers
the full range of tailored capabilities discussed above. Taken
individually, these facilities may not each be the best in their class,
but as a complex, their combined capabilities are unmatched in the free
world. Langley also has the premier high temperature structures
hypersonic tunnel in its 8 ft HTT. This tunnel is currently being
modified to also serve as a SCRAM jet propulsion facility.

Ot her comparisons made by size, Reynolds number, and Mach number
capabilities follow.

1.5.1 SIZE

The U.S. is the undisputed leader in wind tunnel size with Langley's 8 ft
High Temperature Tunnel (HTT) and 5 ft Mach 20, High Reynolds Helium
tunnel; Calspan's 96 inch and 48 inch shock tunnels; and the Naval
Surface Weapons Center's Hypersonic #8a and #9 tunnels. Nothing
comparable exists in the rest of the free world. Table VIII lists the
hypersonic tunnels according to size and comparable capabilities.

1.5.2 MACH NUMBER

The largest Mach number range is also in the U.S. tunnels, evenly
distributed throughout NASA, DOD, and industry. France's C-2 tunnel is
the only comparable foreign facility.

1.5.3 REYNOLDS NUMBER

A comparison of those tunnels having the greatest Reynolds number (Remax)
capability is given in Table IX and Figure 12. The U.S. tunnels are also
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1.6

the leaders in this capability with the Calspan 96 in. and 48 in.
Shocktunnels out front, followed by DOD and NASA tunnels. The closest
foreign tunnels are the U.K.'s M4T and M7T in Bedford.

A summary observation is that this area of research has been sorely
neglected in recent years, with a consequential effect on the health of
its facilities. Many have been placed on standby status or dismantled.
This is particularly evident in the U.S. industry. Of the 50 U.S.
facilities listed in the 1979 AEDC survey which would have otherwise met
our present criteria, only about 30 are still operational and

included in the current catalogue. As mentioned previously, the
population of impulse tunnels, where much of the basic research is
conducted, has been especially affected.

Of the hypersonic facilities that are still operational, most are very
old and in serious need of rehabilitation, especially the Langley
complex. Furthermore, the existing range of capabilities is inadequate
to meet most of the demands anticipated by the class of hypersonic
vehicles envisioned for the year 2000. Specifically, larger, high-
thermal, high Reynolds and Mach number facilities will be needed to cover
the flight conditions to be experienced by these vehicles and to permit
large scale testing of complex aerodynamic/propulsion configurations and
the corresponding aerothermal effects.

Last, but probably most important, is the serious lack of experienced,
knowledgeable personnel to operate and conduct research in these
facilities. Obviously, one is no good without the other. This comment
applies equally to foreign capabilities as well as to those in the U.S.

NASA'S POSITION IN WIND TUNNELS

NASA owns several premier wind tunnel facilities in each of the speed
regimes, providing large size, good flow characteristics, high Reynolds
number capabilities, and a substantial range of Mach numbers. Most
prominent are:
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Subsonic Tunnels:

ARC -

LRC -

LeRC

40x80x120 ft. complex

12 ft. Pressure Tunnel

30x60 Full Scale Tunnel

4x7 meter

Low Turbulence Pressure Tunnel (LTPT)
Icing Research Tunnel (IRT)

Transonic Tunnels:

ARC -
LRC -

11 ft. Unitary Plan Tunnel

NTF

8 ft. Transonic Pressure Tunnel (TPT)
Transonic Dynamics Tunnel (TDT)

16 ft.

Supersonic Tunnels:

ARC -
LeRC -

9x7 & 8x7 Unitary Plan Tunnels
10x10 Propulsion Tunnel
8x6 Propulsion Tunnel

Hypersonic Tunnels:

ARC -
LRC -

These represent key assets in the Nation's overall supremacy in this category
of aeronautical facilities.
capital investment is about 30 years old (average) and needs to be protected
against further aging and obsolescence through well planned maintenance and
rehabilitation/modernization programs.

propulsion-airframe integration, and low disturbance supersonic research

facilities).

3-5 ft.
8 ft. High Temperature Tunnel (HTT)
Hypersonic Complex
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However, as discussed in Section 4, this large

Otherwise, NASA's inventory of wind
tunnels appears adequate to meet most of the foreseeable needs, except for
those specific requirements addressed in this report (e.g., hypersonics,




2.0

2. AIRBREATHING PROPULSION FACILITIES

INTRODUCT ION

The airbreathing propulsion facilities covered by this assessment fall
into three categories:

- Propulsion Wind Tunnels

- Altitude Engine Test Facilities

- Engine/Propulsion Component Facilities

These three categories cover the full range of facilities required to
develop and improve the aircraft engines used by both civil and military
aviation,

The wind tunnels included in this section are only those that permit real
engine testing (engine burn) while the wind tunnel is in operation.
Tunnels that provide only propulsion simulation capabilities through the
use of compressed air driven engine simulators (or similar techniques)
are not included in this comparison, They are covered with the other
tunnels in the Wind Tunnel section. The engine test facilities covered
in this assessment are only those providing altitude test capability.

Sea level test stands are too numerous and do not provide the proper
temperature and pressure conditions required in conducting full range
engine research and development. Engine test facilities with both direct
connect and free jet capabilities are included. Of the engine/propulsion
component facilities, only those providing R&D or testing capabilities
for turbines, compressors, fans, and combustors have been included. Other
facilities, rigs, or equipment dealing with fuels, lubricants, bearings,
seals, and materials were considered too numerous and widespread for this
survey. Additionally, the latter generally represent much smaller
facilities requiring low capital investments, and therefore are much more
abundant throughout the aeropropulsion industry, government laboratories,
and academia.,
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2.1

2.2

This survey covered U.S. Government laboratories, industry and foreign
installations. The response was good from the U.S. sources but only
marginal to poor from other countries; particularly for component
facilities where the response was negligible. Nevertheless, the
Assessment Team worked with the data submitted plus their own personal
knowledge to arrive at the opinions expressed herein. Refer to Table I-b
for the distribution by country/owner.

SUMMARY ASSESSMENT

Overall, the U.S. owns the largest number and most capable propulsion
facilities in the free worid, with industry and government laboratories
sharing this wealth almost equally. The U.S. laboratories (NASA and
DOD's AEDC) own the best propulsion tunnels; industry and AEDC offer

the best engine test capabilities; and industry has the most modern

and comprehensive set of propulsion component facilities. The best
foreign airbreathing propulsion capabilities are the engine test
facilities in the U.K. (Peystock) and in France (Saclay). NASA's
strongest suit is in its propulsion wind tunnels and in its overall
propulsion research capabilities, which combine its facilities and
research staff. Due to its low air flow capacity, NASA does not own any
premier engine test facilities, but it does own (or is in the process of
obtaining) some unique research capabilities in the components area.

PROPULSION WIND TUNNELS

Propulsion testing in wind tunnels allows the engine and its installed
inlet to be tested as an integrated system. The propulsion system is
presented with an air flow environment similar to that encountered in
real flight where the air is directed around the inlet as well as into
it. Other elements of the propulsion system or aircraft are likewise
exposed to the same environment and are free to interact with one another
as in actual flight conditions. In the larger wind tunnels the angle of
attack can also be varied, resulting in even more realistic air flow
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conditions for the enygines. For complete aerodynamic behavior and
propulsion/airframe integration studies, the wind tunnel is not
surpassed. The deficiency of wind tunnels for engine testing is their
inability to obtain true temperature simulation over a wide operating
range. In general, the air in a wind tunnel is not hot enough at the
high Mach numbers nor cold enough at the high altitudes and lower Mach
numbers. Moreover, conditioning the large volume of air used by the
tunnel in addition to that used by the engine itself is a difficult,
costly, and inefficient process. Engine test facilities are more
economical in this respect for low bypass engines and generally have
better provisions for temperature/altitude simulation.

There are very few true propulsion tunnels in the free world (see

Table X). This table indicates that the majority are in the

U.S. at either NASA or the DOD. The NASA capabilities include the large
low speed 40x80x120 tunnel at Ames plus the 10x10 and 8x6 ft supersonic
tunnels at Lewis. The DOD owns the premier transonic and supersonic
facilities at AEDC with their pair of 16 ft tunnels. In the Hypersonic
regime, NASA will own the only large facility when the 8 ft High
Temperature Tunnel is modified with oxygen enrichment in 1986. The
European capability is all low speed and is located in France (S-1 MA)
and the Netherlands (DNW). The U.S. industry has a 9x9 ft low speed
facility owned by Boeing and a few small hypersonic tunnels owned by
General Applied Sciences. The U.S. is clearly the leader in this
category.

However, at the present time there are no facilities in the free world
that can provide the proper altitude and temperature controlled
environment in which to conduct large scale, true propulsion/airframe
integration research. NASA is attempting to fill this gap with their
proposed Altitude Wind Tunnel tacility project at LeRC.
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2.3

ALTITUDE ENGINE TEST FACILITIES

Propulsion testing in Altitude Engine Test Facilities falls into two
broad categories: direct connect and free jet testing. In the direct
connect version, air is fed directly into the engine, eliminating

(or bypassing) the use of an inlet and avoiding any loss of air flowing
around the engine. The intent is to present properly conditioned
combustion air to the engine as if an inlet were present but in a more
efficient manner. Usually this air is presented in an idealized, uniform
profile, although provisions are often available for introducing
temperature and pressure profile distortions. The smaller, more easily
controlled volume of air is thereby easier to condition for the
temperature extremes (hot or cold) required for true simulation of engine
operation at high Mach numbers, or at high altitude and low Mach number.
Not all facilities, however, offer all of the desired conditions, either
because they were designed for specific applications or certain
limitations were imposed due to cost or the technology available at the
time of construction.

In free jet engine test stands, the engine and its inlet are mounted so
the air from a nozzle can impinge on the engine's inlet. This
configuration is similar to a wind tunnel except that the quality of the
air flow is seldom as good. However, free jet facilities are still more
economical since the air can be directed right at the inlet, and the
provisions for good temperature simulation are also available. The angle
of attack capabilities are generally very limited but they can be
extended in the larger facilities. Generally, a free jet capability is
available as an option or specific configuration of a direct connect
facility.

Of the more than 80 Engine Test facilities examined, about 60
offered altitude simulation capability and were compared in this
assessment. Of these, 42 belong to the U.,S. with a replacement
value of more than $2.5 billion, most of it invested in the poD
facilities at AEDC.
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In order to perform a meaningful comparison of these facilities, they
were categorized into three airflow/Mach number groups, each suitable for
testing a particular class of engines. A fourth group of those
facilities offering free jet capabilities was also compiled and compared.

GROUP 1: Facilities capable of testing large high bypass turbofan engines at
an air flow of 1200 1b/sec or greater and air speeds less than Mach 1.

GROUP 2: Facilities appropriate for testing large turbojet,
small high bypass turbofan, and low bypass turbofan engines with an air
flow of 480 1b/sec or larger and air speeds of Mach 3.0 or greater.

GROUP 3: Facilities for testing medium and/or small turbojet engines, with an
air flow of Tess than 480 1b/sec and air speeds up to Mach 3.5.

GROUP 4: Facilities offering a free-jet testing capability.
Tables XI-a-d list individual facilities in each of the above groups.

Because free-jet testing may be an additional rather than a sole capability at

some facilities, Group 4 contains some facilities that are also listed in the
other groups.

2.3.1 HIGH FLOW, HIGH BYPASS, LOW SPEED TURBOFANS (GROUP 1)

Table XI-a Tists those facilities capable of testing these large
engines. The premier capability in this category resides in the U.S. at
DOD's AEDC. Of the seven test chambers listed, the four with the highest
flow are at AEDC. Two of these, ASTF-C1 and C2, are brand new modern
chambers currently being checked out for operations (summer of 1985).
The ASTF complex will have full transient test capability, providing for
the simultaneous programming of engine speed, Mach number, and altitude
conditions. Both refrigerated and hot air conditioning are available,
with the latter being necessary in testing at high Mach numbers; a
capability that makes the AEDC facilities more flexible than all the
other test facilities in this category.
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Following AEDC, the next best capability based on air flow is in the U.K,
at the RAE-Pyestock facilities in Farnborough. Test cell 3W has an air
flow capacity of 1390 1b/sec, a very respectable capability in this
category. American industry also has some good capabilities in this
category at the Pratt & Whitney Willgoos Laboratories' test cells X217
and X218. These facilities can deliver an air flow of 1200 1b/sec, with
test cell X218 also providing transient testing capabilities. The next
largest American commercial facility is the General Electric (Cincinnati)
test cells #43 and 44 with a capacity of 1000 1b/sec, which, although

not meeting the 1200 1b/sec criteria, are used extensively for testing
large turbofan military engines.

NASA does not have any capability in this category, and probably will not
since the field is well covered by DOD and industry. Furthermore,
indications are that the direction of future research is toward high
performance supersonic engines rather than larger subsonic transport
engines.

2.3.2 LARGE TURBOJET, SMALL HIGH BYPASS AND LOW BYPASS TURBOFAN
Engines (Group 2)

Table XI-b lists those facilities capable of testing these medium flow,
high-speed engines (2480 1b/sec, M23). Again, the premier capability

in the Western World is at AEDC with its ETF-T1, T2, T4, J1 and J2, in
addition to their ASTF complex. All provide large flows of heated and
refrigerated air offering good simulation of engine conditions over a
wide operating range. The lead position of the U.S. is further strength-
ened by substantial capabilities at other U.S. Government agencies (NAPC
and NASA - Lewis) and U.S. industry (P & W and G.E.). Outside the U.S.,
France (CEPr) has very good capability at the high flows over a wide Mach
number range. The U.K. has reasonable air flow/Mach number capability
with the added advantage of transient testing abilities.

Even though this is the area where the bulk of future engine research is
anticipated, NASA's capability in this category of facilities is limited

- 59 -



due to low air flow and exhaust capacity. From a development stand-
point, one facility with the overall capability of AEDC's ASTF is all
that is needed by the U.S.. However, from a research perspective, the
NASA Lewis facilities would need upgrading to increase their current flow
capacity and provide full transient test capability if the full spectrum
conditions for these types of engines are to be simulated and
investigated.

2.3.3 MEDIUM AND/OR SMALL TURBOJET ENGINES (Group 3)

As illustrated in Table XI-c, the test facilities in this category are
evenly distributed throughout the Western World in both industry and
government agencies, with the U.S. neither in the lead nor at a
disadvantage. NASA has no comparable facility dedicated specifically in

this range, although the Lewis PSL #3+4 test cells have the capability to
test this category of engines.

2.3.4 FREE-JET CAPABILITIES (Group 4)

Table XI-d 1ists the Free-Jet test facilities/capabilities surveyed for
this assessment. Many of these represent an additional capability to
test facilities already listed under the previous categories, but are
repeated with the dedicated free-jet facilities for purposes of
completeness. With the addition of a free-jet capability at AEDC's
ASTF-C2 in 1987, the U.S. will have the free world's premier facility for
this type of engine testing. This lead position is further strengthened
by the excellent facilities at the Marquardt Company in Van Nuys, Cali-
fornia. The European capability is evenly distributed between the British
(7) and the French (5), but is not comparable to that of the U.S.. NASA,

on the other hand, relies on its large propulsion wind tunnels to conduct
similar type engine testing.
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2.3.5 SUMMARY

The most important parameters in comparing Altitude Engine Test
Facilities are their air handling capacities (both supply and exhaust)
and their ability to supply both hot and refrigerated air. Providing
full transient test capabilities is another distinguishing characteristic
of the World Class facilities. Figure 13 compares the NASA - Lewis
capabilities with those of AEDC's ASTF, U.K.'s RAE (Pyestock), and
France's CEPr in Saclay. The air supply and exhaust pressures are
plotted against air flow showing clear evidence that the outstanding
overall capability is at AEDC, with its ability to provide high flows at
high pressures, matched by the appropriate exhaust capacity. The air
handling capability of the U.K.'s RAE (Pyestock) is also very impressive
but falls short of AEDC's exhaust capacity at high flows. The NASA Lewis
exhaust capabilities are similar to those of France's CEPr, while their
relative air supply capacities vary depending on the operating pressure
levels.,

Figure 14 shows a histogram comparing air handling capacities for various

facilities/installations. This comparison also indicates that the U.S.
(AEDC) is the leader in this category, followed by the U.K.
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2.4 ENGINE/PROPULSION COMPONENT FACILITIES

The Engine/Propulsion Component facilities included in this assessment
were limited to those for testing or conducting research on:

- Turbines

- Compressors

- Combustors

In contrast to propulsion wind tunnels and engine test facilities which
require large complexes and usually large capital investments, component
facilities are smaller, simpler, and considerably less costly. Whereas
their bigger counterparts are principally used for the test and
development of complete propulsion systems, component facilities are most
often used for conducting the more basic and applied research plus
experimental studies on propulsion subsystems, although a certain amount
of development testing is also performed in them by engine manufacturers.

Of the component facilities reviewed, U.S. industry owns the major share,
followed by NASA and the DOD. Universities own mostly small-scale,
fundamental research facilities and rigs. While industry use of their
facilities is mainly proprietary, they are also available for

government R&D contract activity, as are the university ones. Forty-
six U.S. facilities were reviewed representing a replacement value of
about $250 M, not counting central air supply and utility systems. Due
to the poor response from foreign installations, the number of foreign
facilities reviewed was minimal, with Japan, the Netherlands, and West
Germany the only respondents. However, the U.K.'s RAE-Pyestock and Rolls
Royce facilities are familiar to the Assessment Team members and have
been included in this comparison. Table I-b shows the distribution of
these facilities by owners.

In assessing the relative capabilities of this class of facility, close
attention and importance was given to a facility's versatility for
conducting research as well as tests. For instance, a common research
objective for all three types of facilities (turbines, compressors,
combustors) is to provide the fundamental information needed to create
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computer modeling codes and then to verify the output of these codes.
Detailed flow, pressure, stress, and heat transfer measurements on each of
these components is therefore necessary, and the caliber of the
instrumentation for conducting these measurements is as critical as the
basic facility's characteristics of air flow, power, and
temperature/pressure simulation. Unfortunately, performance comparison
charts reflect only the latter and seldom address the other features,
which are usually qualitative rather than quantitative. Nevertheless, an
attempt was made to point out these features as qualifiers to the
relative strengths and weaknesses otherwise indicated for the various
facilities reviewed. For the most part these qualifications apply to the
NASA Lewis facilities, which are primarily used for basic research.

2.4.1 TURBINE FACILITIES

A summary of the turbine facilities reviewed is provided in Table XII. Two
plots comparing the relative capability within the U.S., NASA, and foreign
facilities are shown in Figures 15a and 15b. These charts plot pressure
versus flow for hot (2000 - 3000°F) and warm (600 - 1000°F) conditions.

The general indication is that capabilities in this area are well spread
within the U.S., with industry covering the broadest part of the test
envelope. The situation in Europe and Japan is similar, with a vartety

of cold, warm, and hot rigs for static cascade and rotating stage research
and development.

Although the U.S. industry facilities range from fundamental to
developmental, they are used mostly in a proprietary manner to design and
develop turbines specifically for their product 1ines. The NASA Lewis
and university facilities are used primarily to address fundamental flow
and heat transfer mechanisms, and the development of analytic models for
fluid behavior.

Two Lewis facilities (one existing and one under construction) are
unique, with capabilities beyond those of any other in existence. The

Hot Section Facility (HSF) offers the highest flow capacity in both the
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cascade and turbine modes. The Small Warm Turbine facility has a unique
combination of capabilities for testing and conducting research on small
engine components. These include a rotating data system capable of
reading pressures and temperatures, a flexibility for testing both radial
and axial turbines, and the ability to duplicate real engine ratios of
primary flow temperatures to coolant temperatures. The Hot Section
Facility will be placed on standby in 1985, and the Small Warm Turbine
facility will become operational in 1986.

2.4.2 COMPRESSOR FACILITIES

A summary of the existing compressor facilities reviewed is presented in
Table XIII. A plot of the free world's overall capabilities in terms of
speed, flow, and power is also shown in Figures 16a and 16b to highlight
NASA's relative position. Although, as noted previously, the survey may
not include all the domestic and foreign facilities in this area, it does
bracket the full spectrum of existing capabilities in the free world,
such that the mission facilities fall somewhere within the envelope
covered by these plots. The indication is that U.S. industry owns

the greatest capability in terms of the high power and flow capacity
needed for large engine development work. The foreign facilities also
appear oriented toward development work by emphasizing lower speeds but
high power and flow capacity. In contrast, NASA's research capabilities
extend over most of the rotational speed range but fall considerably
short in power and flow. However, as also indicated earlier, these
quantitative performance plots do not reflect the total capability in
terms of unique instrumentation and data-gathering features crucial to
fundamental investigations.

NASA Lewis' facilities are used to obtain detailed flow measurements
within the blade passages of high speed turbines and compressors for use
in modeling and code verification. As such, Lewis has acquired the
finest overall capability in laser anemometry instrumentation that exists
in the U.S. and the free world. The U.S. industry, in general, relies on
NASA's research in this area. Only Pratt & Whitney pursues this type of
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work in-house. The U.K.'s Rolls Royce has an extensive program using laser
instruments to study the internal flow fields of transonic axial stages,
while Germany's DFVLR is pursuing similar studies on both axial and
moderate pressure centrifugal stages. Other Lewis activities include
detailed measurements of the stalled region within high speed multistage
compressors, and studying the phenomenon of detuned rotors. The Large

Low Speed Centrifugal Compressor Facility, scheduled for operation in

1986 will represent the only large facility of this type in the free

world in which to conduct detailed flow measurement in its relatively

large blade passages, and thereby improve the understanding of the

complex flows within the three-dimensional, high viscous flow fields of
centrifugal stages.

2.4.3 COMBUSTOR FACILITIES

As with the turbine and compressor facilities, the U.S. industry and
foreign combustor facilities range from the fundamental research variety
to the development types, but are principally used for proprietary,
product-Tine improvement work. University and NASA facilities are more

oriented to fundamental research. Table XIV lists the combustor
facilities reviewed.

The advent of the modern gas turbine engine with combustion systems
operating at high temperatures and high pressures has been accompanied by
an increase in hot section durability problems, with the attendant need
of upgrading combustor facilities to operate in these ranges. The

U.S. industry has now upgraded their facilities to perform full pressure
sector and reduced pressure, full annular testing. A comparison of the
NASA, General Electric, and Pratt & Whitney capabilities for large
combustor testing is shown in Figure 17. Also shown for comparison is
the operating line for sector and full annular combustors, representing a
typical modern, in-use, high-bypass ratio engine. Future cycles already in
design will have operating lines even more severe than those shown. Both
G.E. and P&W can test sector combustors at exact conditions. The LeRC
Hot Section Facility (fully operational) can do likewise. However, at
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the present time none of the existing facilities has sufficient mass flow
capability to handle the large, full annular combustors at maximum
pressure. On the other hand, some versions of future generation engines,
particularly those with bypass ratio in the 6 to 8 range, may have core
flows substantially less than indicated in the chart, and fit well within
the high end of the fully operational HSF flow map, making this facility
a unique capability in the U.S. propulsion component arena.

With respect to foreign capabilities, the U.K., with the combination of
Rolls Royce and RAE-Pyestock, has facilities comparable to the U.S.'s.
The other European countries do not manufacture large engines and have
not developed facilities with large flow capacity. In the Far East,
Japan has continued the development of new combustion facilities,
culminating in the activation of their 50 atmosphere, 8.8 lbs/sec
combustor rig in 1983, for a very respectable capability.

2.4.4 SUMMARY

The development of advanced propulsion/engine components requires the use
of facilities that are capable of providing fundamental information on
their design characteristics and behavior across a wide spectrum of
operating conditions. As such, these facilities tend to be much more
research oriented than their engine and wind tunnel counterparts.
Sophisticated instrumentation and computer modeling codes are as
essential in this area of research and development as in any other, and
future propulsion component facilities will require nonintrusive
instruments such as laser anemometer, holography, and others that can
accurately measure flow velocities, local gas and metal temperatures, and
heat transfer. These measurements must be made in very close proximity
to flow boundaries due to the criticality of boundary layer flow.

The most promising approach in successfully mapping the fiow in these

areas is through the use of very large compressors, fans, and turbines to
provide boundary layers of sufficient thickness for thorough and accurate
measurements. A large centrifugal compressor facility will exist at NASA
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2.5

Lewis by 1986, but there will still be a need for a complementary large
scale axial turbine facility to round out the research capabilities in
this area, and NASA Lewis seems to be the 1ogical place for it.

NASA'S POSITION IN AIRBREATHING PROPULSION FACILITIES

As stated previously, the Nation's premier capabilities in this category
of aeronautical facilities resides mainly in DOD and industry. NASA's
strength is located principally in its propulsion wind tunnels and some
unique component research facilities. Its engine test capabilities are
limited by air flow capacity, but are still of national caliber,

Overall, NASA's principal asset and contribution to the Nation's

strength in this field is its "total" research and test capability, which
includes its research and operations staff in addition to the facilities
themselves. Although this consideration applies also to the wind tunnels
and flight simulators, it is particularly evident in the propulsion

area. Its aero propulsion facilities are designed and operated to meet
research needs rather than development requirements. Industry and DOD
satisfy the latter quite well, but they both look to NASA to address the
fundamental research and problem-solving needs across the entire spectrum
of airbreathing propulsion. In this context, NASA is considered well
facilitized, except for the specific needs addressed in this report plus
the general recognition that some rehabilitation and modernization of its
older facilities is a continuing necessity.
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3.0

3. FLIGHT SIMULATORS

INTRODUCTION

Unlike some aeronautical facilities (e.g., wind tunnels) which can be
quantified across several parameters to cover a spectrum, there is no
consistent methodology for quantifying flight simulation facilities.
While simulators can be categorized by the makeup of the pilot station,
the capability of the facility as a research and development tool is
largely determined by the perceived research requirements for computing
power, visual system capability, flight deck displays, motion cues, and
air traffic control capability. Therefore, for the purpose of this
assessment, a simulator facility is defined as the pilot station ("the
simulator cockpit") and the support facilities required to provide the
necessary information to the real-time piloted simulation. The decisions
concerning what is necessary in terms of pilot perceptual cues and
attendant computing requirements for a particular type of research or
development are largely dependent on the individual R& program. The
flight simulation facilities have therefore been assessed based on
capabilities to provide maximum information to the pilot and researchers.

The use of simulations in lieu of airborne flight operations is
widespread in both R&D work and pilot training. The pilot training
simulators offer distinct advantages in terms of reduced fuel costs,
increased pilot training time, safety, and increased training
efficiency. The R&D flight simulators are typically used in coordinated
programs with wind tunnels, flight tests, and new avionics systems to
develop new systems and concepts for aerospace vehicles. Although the
new training systems are pushing the state-of-the-art, this assessment is
only concerned with R& flight simulation facilities. The training
facilities are normally not available for R&D work and, in general, lack
the flexibility and data acquisition capability necessary.
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The R&D flight simulators included in this assessment cover a wide ranye

of R&D work including:

- Handling qualities evaluation and control system design for
proposed and existing aircraft,

- Avionics, Guidance and Navigation systems development, including

controls and displays.
- Weapons systems development.

- Human factors studies including pilot capabilities and workload.

- Flight management including aircraft systems, flight procedures,
and ATC interactions.

These facilities range from development simulators for specific new
aircraft developments to generic flight decks offering significant
capability in motion, visual, cockpit displays, or other support

facilities.

Numerous R&D flight simulation facilities exist in the U.S. and abroad in
both government agencies and private industry. These facilities range
from a small CRT with a joystick at a desk to multimillion dollar
research laboratories with powerful motion, visual, and computing
capabilities. In an effort to identify the R&D flight simulation
facilities with significant capabilities, a set of guidelines was
generated for inclusion in the assessment. In addition, many R&D flight
simulation facilities have more than one simulator cockpit (pilot
station) and share support facilities among several cockpits. Computing
facilities (including data acquisition and analysis tools), visual scene
generation equipment (either CGI or model boards), and programmable
display generators for Head-up or Head-down flight deck display (color
or monochrome, stroke or raster) are typically shared facilities. In
some cases, Air Traffic Control (ATC) facilities are available so that
several different simulators can "fly" under ATC along with other
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computer-generated aircraft. The availability of these support

facilities, as well as the power of the facility, was considered in making
an assessment of the R&D capability.

Because the field of Flight Simulation is relatively new compared to wind
tunnels and engine test facilities, large R& Flight Simulation
facilities are not as widespread or abundant as the others. This seems
to be particularly evident in foreign countries. Also, unlike their
sister aeronautical facilities, Flight Simulators are much more
evolutionary due to the continually advancing electronics and
computational systems on which they so strongly rely. This has created
an environment of near-term obsolescence in all the existing facilities
and even in those currently planned or under construction, with the older
facilities suffering the most. On the other hand, those now emerging
into this field, such as Japan, will enjoy the clear advantage that the
latest technology will offer. It is in this context that the following
assessment of relative capabilities must be taken. The dynamics of this
environment will no doubt alter the picture in the near future.

Although a survey was made of all the domestic laboratories and industry
known to be involved in R&D simulation, plus their foreign counterparts,
the response was less than anticipated; particularly from the foreign
countries. About 85 candidate facilities were received and examined, of
which roughly 35 were eliminated for not meeting the set criteria. The
numerous training facilities used by commercial airlines and the military
were not included, nor were other facilities involved in other than
aerospace R&D, such as the DOD's 40m visual system development simulator.
Table I-c shows the distribution by owner.

Flight Simulation Facilities Categories: It is extremely difficult to
place the numerous Flight Simulation facilities into several small
categories, since most were designed for a specific research or
development task. However, they can be fit into a few broad
categories such as:

1. Airborne Simulation Facilities

2. High-Performance Aircraft Simulators
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3.1

3.2

3. Vehicle-Specific Flight Decks
4, Generic Flight Decks

In this breakdown, most of the simulators surveyed fall into the last

two categories. Nevertheless, these categories still permit a
reasonable comparison and assessment of relative capabilities.

SUMMARY ASSESSMENT

The U.S. is the undisputed leader in this category of aeronautical
facilities, although some good capabilities exist in the U.K., France,
Germany, and Japan, with the latter currently building modern and very
capable facilities. The U.S. leadership is generally across the board
and resides mostly in the aircraft industry. NASA owns the premier
capability in motion simulators with Ames' Vertical Motion Simulator
(VMS) and Flight Simulator for Advanced Aircraft (FSAA). DOD's principal
capability is its Total-In-Flight Simulator (TIFS), an airborne simulator
operated from Wright Field.

AIRBORNE SIMULATORS

Although a number of government and military installations employ flying
testbeds to evaluate new developments ranging from avionics to new
engines, there are very few facilities classified as airborne R&D
simulators. The U.S. has two exceptional airborne facilities which are
configured for different types of R&D.

The Total-In-Flight Simulator (TIFS) operated by CALSPAN for the USAF WAL
is basically a model-follower with on-board computers that can be
programmed to provide the handling qualities of a range of different
aircraft. It has the standard C-131 cockpit and a separate nose-mounted
evaluation cockpit for R&D work. The TIFS is unique as a “flying
simulator" which can be programmed to match the handling qualities of any
aircraft within the 1imited envelope of the C-131 host aircraft.
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The other unique "flying simulation facility" is the Terminal Systems
Research Vehicle (TSRV) operated by NASA's Langley Research Center. The
TSRV is designed for aircraft systems related efforts rather than
handling qualities work. Although powerful on-board computers exist, no
efforts have been made to change the basic B-737 handling qualities. The
TSRV utilizes a flying simulator cockpit to do R&D on systems (controls,
displays, flight management, ATC procedures, etc.) using the B-737's
handling qualities. A ground-based simulator cockpit identical to the
flight simulator cockpit is used with more powerful computers and cockpit
display equipment to do preliminary studies. The ground-based simulator
and the identical flying simulator represent a unique R&D simulation
facility for systems work with fixed aircraft handling qualities but with
programmable controls and displays.

The best capability for airborne simulators appears to be the ATTAS
facility scheduled to be operational in 1986 in West Germany. The twin
engine jet aircraft will combine the capabilities of the U.S. TIFS and
TSRV with model following capability as well as an aft flight deck
simulator in the aircraft and a ground-based simulator cockpit. The
DFVLR facility will be used for handling quality as well as systems
work. The facility will have an ATC capability to generate simulated
traffic for systems studies.

The following were reviewed for this assessment:
® Terminal System Research Vehicle (TSRV) -- NASA Langley
Total In-Flight Simulator (TIFS) -- USAF WAL
NT-33A In-Flight Simulator -- USAF WAL
B0-105 Fly-By-Wire Helicopter Simulator -- DFVLR, West Germany
Advanced Technologies Testing Aircraft System (ATTAS) -- DFVLR,
West Germany
® Helicopter Variable Stability Research (VSTAR) Vehicle -- NASA
Ames
® Quiet STOL Research Aircraft (QSRA) -- NASA Ames
® VSTOL Flight Research Aircraft -- NASA Ames
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3.3 HIGH-PERFORMANCE AIRCRAFT (AIR-TO-AIR) SIMULATORS

The air-to-air simulators are primarily used for high-performance
aircraft with large fields-of-view. The dome projection techniques allow
imagery to cover the pilot's entire field-of-view, Most existing
facilities use servoed mirrors to project the other moving objects
(aircraft, missiles, etc.) and servo-driven transparencies to project a
full dome coverage terrain scene. The terrain scenes, however, lack the
capability to project translation of the scene for altitude and speed
cues. This major shortcoming of the air-to-air simulation facilities has
recently been overcome by techniques to project computer-generated
imagery (CGI) terrain scenes inside the domes. Several R&D and training
facilities have initiated contracts for CGI terrain projection.

McDonnell Aircraft Company in St. Louis, Missouri, has the best overall
capability for the air-to-air simulation facilities. 1In addition to having
five domes capable of flying interactively, McDonnell has the most powerful
computing facilities (CDC Cyber 170 series computers) and has awarded
contracts for state-of-the-art capability in CGI terrain scene projection
systems. There are also significant capabilities in air-to-air

simulators in Europe in Germany, France, and England. The only air-to-

air dome projection facility within NASA is the DMS at Langley. DMS was
one of the first of these simulators, but has not been upgraded since it
was built in 1969/70. The ACAVS at Ames will have a dome by 1987.

The following is the 1ist of facilities reviewed under this category:

o Differential Maneuvering Simulator (DMS) -- NASA Langley

® Manned Air Combat Simulators (MACS) I, II, III, IV and V --
McDonnell Aircraft Co.

o LAMARS -- USAF WAL

® FHI Flight SimuTlator -- Fuji Heavy Industries, Japan

® Air Combat Simulator -- France

® Air Combat Simulator -- British Aerospace, England

® Dual Flight Simulator -- IABG, West Germany

® LASWAVES -- Northrop Aircraft
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3.4 VEHICLE-SPECIFIC FLIGHT DECKS

The specific flight decks are intended for those R&D simulation
facilities working on developments for a specific aircraft flight deck
(e.g., a simulator working on developing controls, displays, and flight
management functions for a company's next generation commercial
transport). The facilities in this category range from the Boeing
737-300 developmental cab to advanced fighter development cockpits at
McDonnell Aircraft and Mitsubishi (Japan) to helicopter simulator
facilities at Bell to the shuttle hardware simulator at Rockwell. Each
facility is desiyned for specific development work making comparisons
difficult; however, Boeing probably has the best overall capability with
a powerful set of computers, a state-of-the-art CGI system for out-the-
window visual scenes, several developmental cabs (one with motion
capability), and color cockpit display equipment. McDonnell Aircraft
also has excellent facilities for development of fighter aircraft. The
Europeans have excellent facilities in England and France; and the
Japanese are building some good new facilities.

The list of Flight Decks in this category includes:

Boeing 727 Flight Simulator -- NASA Ames MVSRF

DC-9 Full Workload Simulator -- NASA Langley

Hughes Advanced Fighter Simulator -- Hughes Aircraft

Shuttie Hardware Simulator -- Rockwell

Boeing 747 and 737-300 -- Boeing

Boeing Systems and Workload Cab (B757-767) -- Boeing

McDAC FA-18, AV-8B and GR-MK-V development simulation cabs --
McDonnell Aircraft

o Flight Simulator for R&D (FSRD) -- National Aerospace Labs - Japan
o Advanced Technology Fighter (ATF) Flight Simulator -- Japan -
Mitsubishi
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3.5

GENERIC R&D FLIGHT DECKS

The majority of the R&D simulator facilities fall into this category.
Most of these facilities were designed to investigate a specific area of
simulation making across the board comparisons difficult. Therefore,
these facilities have been compared in the major categories of motion,
visual, flight deck, and ATC capability as follows.

3.5.1 MOTION

In the area of motion capability, NASA Ames has the best overall
capability with the Vertical Motion Simulator (VMS) with 60 ft. vertical
and 40 ft. lateral motion capability, and the older Flight Simulator for
Advanced Aircraft (FSAA) with 100 ft. lateral motion capability. The VMS
system includes a family of interchangeable cabs to provide a variety of
flight deck configurations, and multi-window CGI visual scene capability;
plus a powerful CDC 7600 computer system. The addition of the Advanced
Cab and Visual System (ACAVS) to the VMS in 1986 will provide dome
projection of a state-of-the-art CGI (CT5A), plus highly modular
rotorcraft-specific flight deck research capability. This integrated
system represents a very powerful R&D simulation capability. Significant
motion capability also exists in the USAF's LAMARS Simulator and the
RAE's new Advanced Flight Simulator in the United Kingdom.

3.5.2 VISUAL

The best visual system capability lies with the latest generation CGI
systems, which provide good scene resolution and realism, multiple moving
objects in the scene and full color, daylight capability. These new CGI
visual scenes are presented to the simulator pilot on projection domes
for wide F.0.V. fighter aircraft, on multiple window systems for 1imited
F.0.V. aircraft scenes (transports), and new partial dome systems for
intermediate fields-of-view. A number of simulation facilities have
acquired or contracted for these new CGI systems for essentially
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comparable visual system capability. The R&D facilities presently owning
or acquiring the systems are: NASA Ames for the VMS/ACAVS facility,
Boeing's Research Simulation Labs, McDonnell Aircraft's MACS facilities,
Northrop's Simulation Labs, the USAF's Human Resources Labs, General
Dynamics Simulation Labs, and Hughes Helicopter. The list is growing
rapidly.

FLIGHT DECKS

The best capability for R&D involving the flight deck probably lies in
the similar new facilities being developed as a joint project between
NASA Langley, Ames, and Lockheed-GA. These new facilities have multiple
CRT displays on the panel with programmable display generators which
allow R&D on the displays. The facilities also have capability for R&D
on the use of touchpanels, voice control and warnings, pilot control and
display units (CDU), and other flight management and human factors
functions. Other facilities with significant flight deck R&D
capabilities include Boeing and Grumman in the U.S.A. and the Airbus
facilities in France.

The following Generic Flight Decks were reviewed:

e Flight Simulator for Advanced Aircraft (FSAA) -- NASA ARC
Vertical Motion Simulator (VMS) -- NASA ARC
Adv. Concepts F1t. Sim. (ACFS) -- Lockheed-GA & NASA ARC
Advanced Concepts Simulator -- NASA LaRC
Visual Motion Simulator -- NASA LaRC
Mission Oriented Terminal Area Sim. (MOTAS) -- NASA LaRC
Multi-Crew Simulator -- USAF FDL-WPAFB
Fighter/Bomber Simulator -- USAF FDL WPAFB
Engineering Interactive Simulator -- Bell

Multi-Purpose Cab -- Boeing, Seattle

Engineering Flight Simulator -- Boeing Vertol

Large Amplitude Research (LARS), Crew Station Technology Lab., and
6 DOF Simulators -- Grumman
e Man-Vehicle Systems Lab. (or ACFS) -- Lockheed-GA
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o Large Amplitude (LAS), and Visual Flight (VFS) Simulators --
Northrop

Engineering Development Simulator -- Sikorsky

Air Traffic Mgmt. & Ops. Simulator (ATMOS) -- DFVLR, Germany
Simulator for Aircraft R&D (SARD) -- Kawasaki, Japan

Moving Base Flight Simulator (MBFS) -- Netherlands

Advanced Fiight Simulator -- RAE/Bedford, U.K.

3.6 NASA'S POSITION IN FLIGHT SIMULATORS

The state-of-the-art in simulation facilities has changed rapidly in the
past five years. Two highly significant new developments have
substantially changed requirements for simulation facilities. The use of
the CRT in operational aircraft has grown to the point that almost all
new or projected transport and fighter aircraft utilize the CRT in the
cockpit to replace a substantial portion of the electro-mechanical
instrumentation. Simulation facilities must now replace the electro-
mechanical instruments and special purpose instrument drivers with color
CRT's and programmable graphics systems in order to support most R&D
activities.

The second major development lies in the area of out-the-window/canopy
visual scenes. The latest generation CGI systems (E&S CT-5A, CT-6, and
G.E. Compuscene IV) now provide the realism and resolution necessary to
support many air-to-air and air-to-ground R&D activities. This
eliminates many of the problems with visual scenes present in most
simulation facilities. It is now possible to achieve wide F.0.V. scenes
for transports or fighters with sufficient resolution. The tradeoff, up
to now, has been to select either good resolution with narrow (limited)
F.O0.V. or wide F.0.V. with low resolution, These latest CGI systems
coupled with new display techniques for windows or dome projection now
allow increased use of simulation for R&D activities involving wide
F.0.V.
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The costs of upgrading to these new systems are substantial but
ncecessary. Most U.S. R&D simulation facilities have spent $10 million to
$50 million for upgrading facilities over the past three years and are
continuing to spend at this rate. Almost all facilities have CGI systems
in use or under procurement. NASA Langley is one of the few remaining
laboratories with no wide F.0.V. (i.e., no CGI system) capability.
Research planned for the DMS (high AOA aircraft control) and the TSRV and
ACS facilities (terminal area flights, flight management studies) now
require this high resolution, wide F.0.V. capability to carry

out Langley's research mission. In the area of cockpit instrumentation
systems, both Langley and Ames need to upgrade to color CRT displays in
most simulator cockpits in order to support R&D activities related to new
or proposed aircraft,

The only areas where NASA has outstanding capability in R&D simulation
facilities are motion systems and advanced cockpits. The VMS at Ames
with the ACAVS system installed provides the best motion facility in the
U.S. or abroad. The Advanced Concept Facilities at Langley and Ames are
on par with the best systems outside NASA. With the exception of these
three facilities, NASA's R&D simulators are seriously obsolete. Most of
the facilities are more than 10 years old. Ames' FSAA and Langley's
real-time simulation I/0 system and DMS are 15 to 20 years old and need
upgrading or replacement. Langley's only motion capability is 14 years
old and also needs replacement.
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4. ASSESSMENT OF NASA'S CAPABILITIES AND NEEDS

INTRODUCTION

Based on the information presented previously, this section attempts the
following:

e To identify those NASA aeronautical facilities that can be
considered World Class, or of National stature.

e To determine the operational status or "health" of these
facilities and what major upgradings or rehabilitations will be
necessary between now and the year 2000 to maintain their
"premier" classification.

o Provide input to an aeronautical facilities long range plan.

Each NASA facility in the three major categories covered by this
assessment (wind tunnels, airbreathing propulsion, flight simulators) was
evaluated and rated against those in the same subcategory (e.g., subsonic
wind tunnels, engine test facilities, airborne simulators, etc.). Each
facility was then assigned one of three classifications:

***World Class: the best (or most unique) in the free world
**u.s. Class: a premier or unique capability in the U.S.
(National) but not worldwide
*NASA Only:  a unique or best capability within NASA.

This classification is intended to indicate a facility's importance in
maintaining this Nation's preeminence in aeronautical R&D, and therefore
the need for retaining its capability through the foreseeable future.
Combined with other factors such as age, state of repair or obsolescence,
replacement cost, and level of use (demand), some conclusions can be

drawn about the particular NASA facilities that need rehabilitation and/or
upgrading within the next 15 years, plus the relative priorities. It
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4.1

4.1.1

must be realized, however, that a given ciassification is not necessarily
static since it reflects today's conditions and situations for a
particular facility and its peers. Modifications to upgrade that
facility's capabilities or the construction of new and better
capabilities somewhere else may alter this classification in future

years.

For each of the major categories, the respective facilities have been
listed by Center and by subcategory in a matrix format that indicates

the age, replacement cost, previous upgrades, and operational status of
each facility, plus its rating classification. Comments also have been
added for each indicating a key characteristic of that facility and/or
its need for upgrading or rehabilitation. These matrices provide a quick
reference from which to glean the observations and recommendations made
for each of the facilities categories.

WIND TUNNELS

There are 39 wind tunnels in NASA meeting the criteria discussed in
Section 1, with an average age of 30 years and a total replacement value
of around $1.4 B. This represents roughly one-third of the U.S. wind
tunnel population and about half of their total replacement value of

$3 B. In contrast, the average age of DOD's wind tunnels is 24 years,
industry's is also 24 years, and over 40 years for academia. The latter,
however, have mostly been renovated more recently. The matrix listing
the NASA wind tunnels by Center and speed regime is shown in Table XV.

SUBSONIC TUNNELS

Of the 11 tunnels in this category at NASA, 7 were built in the 1940's
and one in 1930. The latter is the 30x60 ft. Full Scale Tunnel at
Langley which is currently undergoing some upgrading, but whose main
structure and drives are still 50 years old. The Ames 40x80x120 is the
largest and most expensive complex. Although the 40x80 circuit was
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built in 1944, it was recently enlarged with an 80x120 ft. leg and is now
in the process of final modifications before its scheduled operation in
1986. An analysis of each subsonic tunnel follows:

a. MWorld Class Subsonic Tunnels:

ARC:

ARC:

LRC:

LRC:

LeRC:

40x80x120: Will still need acoustical treatment of its 80x120
test section, leg, and inlet to meet research needs and
environmental restrictions (1988-1990 time frame). Powered
model testing will otherwise be severely restricted.

12 Ft. PWT: Needs modernizing of its antiquated test section
model support and model handling capabilities (1990). Urgent
need of pressure shell recertification to prevent downrating of
its operating pressure level (now). The tunnel is in high
demand by the U.S. industry due to its excellent flow quality
and high Reynolds number capability.

Low Turbulence Pressure Tunnel (LTPT): This tunnel was
recently upgraded and now offers the best flow of any other

research tunnel in its class. No other major upgrades
contemplated.

Vertical Spin Tunnel: The largest and probably the most used
tunnel in its class. Underwent minor rehabilitation in
1984. No major upgrades foreseen.

Icing Research Tunnel (IRT): This is the largest tunnel in the
world dedicated to icing research and therefore is in high
demand. It is currently undergoing major rehabilitation to

improve its water/icing spray mechanism and temperature
controls.

No additional major improvements are anticipated.
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b. U.S. Class Subsonic Tunnels:

LRC:

LRC:

LeRC:

30x60 Full Scale Tunnel: This is the second largest wind

tunnel in the free world with a unique "free-flight" model
support system. Its low speed 1imitations prevent it from
being classified in the World Class category, but it is clearly
a U.S. premier facility. It is undergoing modifications of its
model support and turntable system plus its control room
instrumentation. No additional upgradings are contemplated,
but its structure is over 50 years old and may need
rehabilitation within the next 15 years.

4x7 Meter (V/STOL) Tunnel: This tunnel was modified in 1984 to

improve its flow quality and productivity and to acoustically
treat the test section. It is now one of the best tunnels in
the Nation for conducting subsonic aerodynamic and rotorcraft
tests, including powered models. Future needs include
acoustically treating a much larger section of the wind tunnel
circuit to lower its background noise significantly (-30 db by
1990).

9x15 Ft. Propulsion W.T.: This tunnel is the back leg of the

8x6 tunnel, added in 1968, It is one of about six low speed
propulsion wind tunnels in the world, and although not of World
Class caliber in its overall capabilities, it is currently the
best available in the U.S.. This tunnel leg per se is not in
need of major rehabilitation, but the basic 8x6 tunnel is. The
latter is covered in the supersonic tunnel discussion.

¢. NASA Class Subsonic Tunnels:

ARC:

7x10 Ft.: This facility has been the workhorse of the Ames

low speed tunnels for conducting V/STOL, rotorcraft work in the
absence of the 40x80x120. No major modifications are
contemplated.
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LRC: 7x10 Ft.: Although equal in size to the Ames tunnel, this
facility operates at much higher speeds and varying temperature
conditions. Some rehabilitations may be necessary within the
next 10 years,

4.1.2 TRANSONIC TUNNELS

NASA owns 10 tunnels in this speed regime, 6 of which are at Langley.
Three are of World Class caliber and another four are among the best in
the U.S.. NASA's capabilities in this category are now the best in the
free world, particularly with the addition of the NTF. This set of NASA
tunnels is generally newer than its subsonic ones, with an average age of
26 years, including the NTF which was completed in 1982. Most of these
have already undergone some upgrading over the past 10 years and are
generally in good shape. Langley's 16 ft, built in 1941, is also
scheduled for rehabilitation in FY 1986,

a. MWorld Class Transonic Tunnels:

ARC: 11 Ft.: This is the transonic leg of Ames' Unitary Plan
Tunnels. It was modernized in 1976 with a new data aquisition
system to improve its productivity, but it is still one of the
busiest tunnels in NASA's inventory. No additional
modifications are projected for the foreseeable future,

LRC:  NTF: This new facility is now the premier transonic wind
tunnel in the free world for conducting full scale high
Reynolds number research. Modifications of its model support
system will be required in the near future to permit a wider
range of angle of attack positions, particularly for high
performance aircraft model tests., Additional improvements or
modifications to this facility may be required within the next
15 years as more operational experience is acquired.
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LRC:

LRC:

8 Ft.: TPT: This facility was modified in 1980 to upgrade its

flow characteristics. It is now one of the best transonic
tunnels in the free world for conducting low turbulence,
laminar flow research. No additional modifications are
contemplated, although it is a 30-year-old facility which may
require some systems and structural overhauling by the year
2000.

TDT: This is Langley's other 16 ft. tunnel, specializing in
aeroelasticity and flutter research. It is 18 years younyer
than the 16 ft. tunnel and has already undergone major
rehabilitation in 1983. HNo further improvements are
anticipated in the foreseeable future.

b. U.S. Class Transonic Tunnels:

ARC:

LRC:

MSFC:

14 Ft.: Because of the high demand for its 11 ft. tunnel,
this facility has become the workhorse for the Ames in-house
research. It also offers special features such as optical
ports which are unique in NASA and the U.S., and therefore
essential for certain types of DOD work. The facility is
about 30 years old and in serious need of overall rehabilitations.
It is currently on standby status.

16 Ft.: Currently scheduled to underyo rehabilitation in FY 86
to increase its productivity and research capabilities, this is
Langley's busiest transonic tunnel. Its high demand is due to
its size and its propulsion/airframe integration research
capabilities, surpassed only by AEDC's 16 T.

High Reynolds Tunnel: Although a very small tunnel (3 ft.) for
this speed regime, it offers excellent Reynolds number
capabilities and good flow characteristics. No major

improvements are contemplated.
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c. NASA Class Transonic Tunnels:

LRC: .3 M Tunnel: This is the pilot facility for the NTF and still
an excellent basic research tool for NASA. No major
improvements are contemplated.

ARC: 2 Ft.: Tunnel: This is a good 2-D research tunnel for NASA,
but needs relocating from its present site in the courtyard of

the 40x80x120 complex, and needs some rehabilitation within the
next five years.

4.1.3 SUPERSONIC TUNNELS

There are seven supersonic wind tunnel facilities in NASA, including the
Unitary Plan W T at Langley, which are actually two tunnels, and the two
propulsion tunnels at LeRC. Most were built in the fifties and are now
in need of some upyrading or rehabilitation. Of the seven tunnels, Ames'
Unitary Plan Tunnels and Lewis' 10x10 propulsion tunnel are considered
World Class facilities, mostly because of their size. The other Lewis
propulsion tunnel (8x6 ft.) is considered U.S. Class, principally for its
propulsion capability.

a. World Class Supersonic Tunnels:

ARC: Unitary Plan Tunnels (9x7 & 8x6 Ft.): Both of these tunnels are
considered World Class facilities because of their size and

good Reynolds number capability. However, they are in need of
general modifications to update their instrumentation and
productivity. This upgrading will be necessary within the next
5 to 10 years.

LeRC: 10x10 Ft. Propulsion Tunnel: This is the second laryest

supersonic propulsion tunnel in the free world (after AEDC's
16 S). It is a 30-year-old facility with no previous

- 108 -



b.

C.

rehabilitation or upgrading and in need of some overhauling
within the next five years, particularly its drive motors.

U.S. Class Supersonic Tunnels:

LeRC: 8x6 Ft. Propulsion Tunnel: Except for its overall need for

rehabilitation and modernization, this 36-year-old facility
could be of World Class caliber. It is one of a very small
number of supersonic propulsion tunnels in the world and the
only one with a speed range also covering the subsonic speed
regime. The 8x6 and the 10x10 complement one another in Mach
number range, with the 10x10 covering the high end of the
supersonic spectrum. As indicated, this facility is in serious
need of rehabilitation, which should be accomplished within the
next five years.

NASA Class Supersonic Tunnels:

ARC:

LRC:

6x6 Ft. Tunnel: This is a unique tunnel within NASA in that it

covers a wide range of speeds from the low subsonic through the
supersonic. It is Ames' workhorse for in-house basic research
that cannot be scheduled on the very busy Unitary Plan

Tunnels. There are no major improvements or modifications
envisioned for this facility in the next 5 to 10 years.

4x4 Ft. Unitary Plan Tunnels: These tunnels are the Langley

equivalent of the Ames 6x6, in that they carry the burden of
Langley's fundamental research in this speed regime. These
busy 30-year-old tunnels were rehabilitated in 1979, and there
are no plans for additional major improvements in the
foreseeable future,
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4.1.4 HYPERSONIC TUNNELS

Except for the 3.5 ft. tunnel at Ames, all of NASA's hypersonic
facilities are at Langley. These consist of the large scale 8 ft. High
Temperature Tunnel, the 4 ft. ramjet propulsion facility, and several (8)
tunnels situated at various locations throughout the Center but
comprising a logical "hypersonics complex" covering a broad range of
capabilities in this speed regime. Individually, these tunnels range
from World Class to average. However, as a group, they are unsurpassed
in the free world. Averaging a little over 20 years in age, these
tunnels are in serious need of rehabilitation if they are to serve this
country's technology needs for the coming century. Some of these
facilities are now on standby and are undergoing some upgrading as
discussed below.

a. World Class Hypersonic Tunnels:

ARC: 3.5 Ft. Tunnel: In size and Reynolds number capability this is

a premier facility, although it has a limited Mach number range
(<10). It is currently on standby awaiting the installation

of a new heater dome liner. Possible upgrading of this tunnel
includes increasing its Mach number range to 14 within the next
5 to 10 years.

LRC: 8 Ft. High Temperature Tunnel: This tunnel was originally

built and used as a high temperature structures facility but is
currently undergoing modifications to also allow ramjet/scramjet
propulsion tests. The Mach number range is also being

modified for lower speeds (Mach 4), along with a general
rehabilitation of this 20-year-old facility. When complieted,

it will be the world's largest, long-duration blow-down
hypersonic propulsion facility in the free world. It is also
one of the candidate facilities for supporting the research and
development needs of future (21St century) hypersonic vehicles.
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LRC: Hypersonic Facilities "Complex": Of the remaining set of
tunnels in this speed regime at Langley, the following are of
World Class caliber based on their individual merits:
- CF4 Tunnel
- Mach 20 High-Reynolds Helium Tunnel

- Mach 6 High-Reynolds Tunnel
- Scramjet Propulsion facility

As indicated above, these facilities and the rest of the

“complex" are in need of general rehabilitation if they are to
continue serving this country's needs into the next century.

b. U.S. Class Hypersonic Tunnels:

LRC: Hypersonic Nitrogen Tunnel: Of the remaining hypersonic

facilities, the Nitrogen tunnel is unique by virture of its
N2 environment and therefore is considered of U.S. Class
caliber.

c. NASA Class Hypersonic Tunnels:

LRC: Since all of the remaining tunnels are at LRC, this is a
meaningless distinction. However, as indicated previously,
these tunnels must be considered as a set in order to properly
evaluate their worth to the Nation's capability in this speed
regime. As also indicated previously, the entire complex must
be examined for rehabilitation or for a decision to entertain a
new approach (facility) for conducting hypersonics research
leading to 215t century vehicles.
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4.1.5 WIND TUNNELS SUMMARY

0f the 39 wind tunnels owned by NASA, 18 are considered World Class
facilities and 9 are at least of U.S. Class caliber. As indicated in
Table XVII these are mostly at Langley, although 7 of Ames' 11 tunnels
are World Class. All of Lewis' propulsion tunnels are either of World or
U.S. Class caliber. These statistics also indicate that NASA's wind
tunnel facilities represent a principal asset in the Nation's (and the
free world's) aeronautical R&D capability across all speed regimes.
However, of these 27 premier facilities, representing a current capital
investment of about $1.3 B, at least 11 (with a capital value of about
$450 M) are in need of major rehabilitation or upgrading within the next
15 years; some as urgently as the next 5 years,
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4.2 AIRBREATHING PROPULSION

The Agency's airbreathing propulsion capability is now concentrated
principally at Lewis, with a relatively small capability at Langley in the
hypersonic propulsion area (ramjet/scramyet). The latter's two

propulsion tunnels in this speed regime are the 4 ft. ramyet and 8 ft.
high temperature tunnels. These are unique capabilities that have

already been covered in the Wind Tunnel section and will not be repeated
here. On the other hand, Lewis' three propulsion wind tunnels are

listed again in this section for the sake of displaying LeRC's total
capability across the entire spectrum of propulsion facilities.

In addition to their three propulsion wind tunnels, Lewis' aero propulsion
capabilities also include four altitude engine test stands and numerous
engine component test cells and rigs, of which only 18 have been included
in this assessment as meeting the set criteria (mostly size or cost).
Table XVIII lists the matrix for these three categories, indicating a
replacement value for the listed facilities of about $440 M, to which
approximately $250 M is added for the entire Engine Research Building
(ERB) complex where all the component test facilities, air supply system,
and other supporting equipment are contained. This aggregate investment
of about $700 M at Lewis represents only their principal facilities and
does not account for all of the lesser-rigs and laboratories plus the
remaining supporting systems. By comparison, the comparable investment
by DOD is about $2 B (including ASTF and their two large propulsion wind
tunnels), and about $1 B for industry.

a. World Class Facilities:

Wind Tunnels: 10x10 Ft. Propulsion WT - One of the world's largest
supersonic propulsion tunnels. In need of some

upgrading to extend its Mach number range.

Components: Small Warm Turbine Facility - A new and unique

facility under construction to study the flow
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characteristics and the structural/mechanical
characteristics and behaviors of small turbine
engines components. This facility should not require
any major modifications till the year 2000.

High Pressure, Hot Section Facility - This facility,

better known as the HPF, has recently been ptaced on
standby status. It offers one of the best
capabilities in the world for testing turbine engine
"hot sections" (e.g., turbine and combustors). The
full potential capabilities of this facility should be
maintained, at least on a "ready" status.

Large Low Speed Centrifugal Compressor - This

potential World Class facility is also under
construction with an operational readiness date of
1986. It will provide the capability, not currently
available anywhere, to perform fundamental studies on
the internal flow characteristics of compressor stages
and individual blades.

b. U.S. Class Facilities:

Wind Tunnels:

9x15 Ft. and 8x6 Ft. Tunnels - Both of these tunnels

offer unique capabilities unavailable anywhere else in
the U.S. and are discussed in more detail in the Wind
Tunnel section.

Engine Test Facilities: Propulsion System Laboratory (PSL) - Lewis'

altitude engine test capabilities reside exclusively
in its PSL complex. This complex has four test cells,
two of which, PSL-1 and 2 (the oldest), are currently
deactivated. The two newer ones, PSL-3 and 4, are
very active facilities but limited by air flow
capacity to testing turbojet or medium size turbofan
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Ce.

engines. For this reason they are not judged here as
World Class facilities in the same context as the AEDC
or major industry facilities. Nevertheless, as
research and problem-solving tools for other than the
large, high bypass, turbofan engines, the PSL complex
is in high demand for cooperative DOD and industry
work.

The PSL's air flow capacity of 480 1bs/sec is only
marginal for testing large turbojet or even small high
bypass turbofan engines. An increase of the Lewis
central air supply system to provide a flow of 750
1bs/sec will permit testing the modern turbojet and
medium size turbofan engines not possible with the
lower air supply. It will also increase the margin of
flexibility for smaller engines. By contrast, the air
flow capacity available at the AEDC and industry
facilities is over 1200 1bs/sec. This complex is
NASA's only capability in this area of aero propulsion
research and serious consideration must be given to
upgrading its capabilities or allowing it to phase out
over the next decade and rely strictly on DOD's and
the industry's capabilities.

Comgonents:

The batance of the Lewis component facilities falls within a wide
range of capabilities and cannot be easily classified as U.S. Class
or just NASA Class, i.e., important only to Lewis' in-house research
effort. A recent survey and assessment of these facilities was
undertaken by a NASA senior management team and a separate report on
their findings is available. No further analysis or recommendations
on any of these facilities will be made in this report.
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4.2.1 AIRBREATHING PROPULSION FACILITIES SUMMARY

Of the Lewis inventory of aero propulsion facilities, only four are
considered unique or capable enough to be rated as World Class
facilities, although this is a very conservative judgement, particularly
with respect to the PSL complex. The average age of all the facilities
listed in Table XX is about 15 years (excluding those under
construction), but the large wind tunnels and engine test facilities are
over 20 years old. Fifteen or 20 years ago NASA was in the forefront

of aero propulsion technology and facilities. Now, however, they have
lost this preeminence to DOD and industry across the full spectrum of
airbreathing propulsion facilities, particularly in the category of large
test and development facilities. Nevertheless, the Lewis facilities are
still very good fundamental research and applications tools, which, as
indicated previously, when combined with its overall expertise, are in
high demand by the industry and DOD. This is particularly true for the
fundamental research facilities which the latter generally lack. To
maintain even this small edge, however, serious attention must be given
to the improvements indicated above.
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4.3 FLIGHT SIMULATORS

There are 11 flight simulation facilities in NASA meeting the R&D

criterion established for this assessment, with a replacement value of

approximately $85 M. These simulators are about evenly divided between

Ames and Langley, with the latter owning the most expensive
(TRSV aircraft at $36 M). These are relatively new facilities of about

1977 average vintage. However, as indicated earlier in this report, this

is a rapidly changing technology area and subject to obsolescence after

5 to 10 years. Tahle XIX contains the pertinent information on this group

of facilities.

a.

World Class Simulators:

ARC:

ARC:

LRC:

Advanced Concepts Simulator: This generic flight deck

simulator is part of Ames' new Man-Vehicle System Research
Facility (MVSRF), and one of three such facilities in the U.S.
(Langley and Lockheed-GA own the others). It is now in the
forefront of this technology and other than the addition of an
"intelligent cockpit simulator" will not need any other major
modifications in the near future, but is certain to require
general upgrading before the year 2000.

Vertical Motion Simulator (VMS): This is one of the world's

largest and most unique motion simulators, and therefore one of
the busiest. It is currently being upgraded with a state-of-
the-art Advanced Cab and Visual System (ACAVS) to provide CGI
dome projection capability plus highly modular rotorcraft --
specific flight deck simulation.

Transport Systems Research Vehicle (TSRV): This Boeing 737

airborne simulator is uniquely instrumented to study a wide

array of flight management related technology and procedures in
an air traffic control (ATC) environment. It is being upgraded
to extend its viability over the next decade as a state-of-the-
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art research tool. However, a decision will have to be made

before the year 2000 on whether to replace the aircraft or
phase out this NASA capability.

LRC: Mission Oriented Terminal Area Simulation (MOTAS): The MOTAS
is a ground-based facility in which flight management and
f1ight operations research can be conducted in a highly
realistic environment. This facility is very flexible and can
be adapted to various aircraft, terminal area, and ground
control configurations. It is a new facility (1983) and still
in an evolutionary state. Integration with other Langley
simulators, such as the General Aviation and DC-9 simulators,
plus the Advanced Concept facility, are being planned. No other
major upgradings are contemplated at this time, but there are
certain to be some evolutionary changes within the next 10 to
15 years.

LRC: Advanced Concepts Simulator: This advanced cockpit simulator

is now coming on-line at Langley with the latest state-of-the-
art equipment. It is similar in nature to the Ames and
Lockheed facilities, except that the Ames simulator is used for
human factors research (pilot/instrument interaction), while
the Langley facility is used for flight management research
(i.e., flight controls, instruments, and displays as they affect
the pilot and vehicle in an air traffic control environment).
The Lockheed facility is oriented toward developing specific
aircraft cockpit configurations and hardware. Other than the
addition of external visual capability when WAVES becomes
operational, no other modifications are contemplated.

b. U.S. Class Simulators:

ARC: Flight Simulator for Advanced Aircraft (FSAA): This large
moving base simulator is one of the oldest in NASA and in
serious need of upgrading with new servo controls and modern

- 123 -



computer generated imagery systems. Although lacking the large
amplitude, vertical motion capability of the VMS, it provides
very large lateral motion capability; a very desirable feature
for CTOL aircraft simulation. An upgraded FSAA would also

of f-load the VMS's heavy schedule. The FSAA is currently on
standby status and must be upgraded soon unless it is
detemined that this capability is not needed for the aircraft
technology programs of the future.

c. NASA Class Simulators:

ARC: Boeing 727 Flight Simulator: Although a modern replica of a
B-727 cockpit, this flight deck simulator is not unique in the
world or the U,S.. However, it is a good complementary

capability to the Advanced Concepts cockpit; both of which are
elements of the MVSRF. No major alterations to this flight
deck simulator are contemplated in the foreseeable future.

LRC: Differential Maneuvering Simulator (DMS): This facility is one
of the oldest simulators at Langley and in need of upgrading to

bring it to World Class or U.S. Class caliber once again. A
high angle-of-attack capability is planned for the near future.

LRC: DC-9 Full Work Load Simulator: As with the Ames 727 cockpit
simulator, this is another vehicle specific flight deck which

is not unique in the U.S.. Both of these decks have been
included in this assessment because they are used more for
research than are their industrial counterparts, most of which
are trainers. This is a recent addition to Langley's
simulation capabilities and will not need significant

modi fications in the foreseeable future.
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4.3.1

FLIGHT SIMULATORS SUMMARY

0t the 11 major flight simulators owned by NASA, 5 are considered

Worid Class facilities and 2 more could be returned to that status with
some rehabilitation or upgrading. These 2 are the FSAA at Ames and DMS
at Langley, both about 15 years old. NASA's strength in this field is in
its larye motion systems and advanced research cockpits. However, one
could question whether the future direction in this field will involve
the need for the Taryge motion cues offered by the Ames facilities, or
whether visual and other sensory cues will replace the need for the large
hardware of a VMS. Even so, the technologies (computers and electronics)
that dominate this field are advancing rapidly, making these facilities
obsolete within a very short period unless continually upgraded.

There is also a trend to consolidate the various types of simulation
capabilities existing within each installation (NASA Center) into a
“simulation complex" whose constituent motion and/or visual hardware are
driven by a central, powerful computer. In this manner even the smaller
“rigs" have access.to powerful image generators or sophisticated
algorithms, and the need for replicating large and expensive central
processing units (CPU's) is obviated. In this context, urgent attention
must be given to the Ames EDP systems currently supporting their
simulator complex. Some of these CPU's are over 15 years old and in
critical need of replacement. The cost of this replacement will probably
be recouped in a very short time through maintenance savings and
increased productivity, in addition to the gains obtained in simulation
capacity.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.0 GENERAL FINDINGS

Based on the information obtained from this survey, the United States'
strength in aeronautical facilities is unmatched by any single nation or
combination of nations in the free world. This is true across the entire
spectrum of facilities, whether used for fundamental research or
development purposes. The Europeans' best capabilities reside in their
wind tunnels, pargicularly in their modern facilities. The Japanese
strength is evolviny in the flight simulation area. Within the U.S.,
NASA is the leader in overall wind tunnel capabilities, DOD and industry
have the best and largest airbreathing propulsion facilities, while the
industry and NASA share the lead in R&D flight simulators. This lead,
however, can be transitory, particularly in the rapidly evolving area of
flight simulators where technological obsolescence can be reached within
5 to 10 years. Even the large steel and mortar facilities like wind tun-
nels and engine test facilities do reach the end of their useful life and/or
become obsolete. Some of the Nation's premier facilities are now facing
such a point; particularly at NASA where the average wind tunnel is about
30 years old. In contrast, the Europeans are building newer, more modern
facilities (wind tunnels), as are the Japanese (simulators and
computational facilities).

Some specific observations are as follows:

- MWind Tunnels: The U.S. owns the greatest number, the largest

size, best Reynolds number, and broadest Mach number range wind
tunnel capabilities across all speed regimes. The Europeans own
some excellent modern facilities that offer high productivity and
flow characteristics such as the Dutch DNW, French F-1, and British
5-meter tunnels. NASA owns the largest wind tunnels

(40x80x120 ft. complex), the highest Reynolds number transonic
capability (NTF), and best set of hypersonic tunnels (Ames'

3.5 ft. and Langley's hypersonic complex). A European consortium
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is scheduled to build a high Reynolds number facility like the

NTF, but it is still 5 to 10 years in the future. NASA's planned
Altitude Wind Tunnel (AWT) will fill a critical gap in aero
propulsion and icing research, but it too is about five years in the

future.

Airbreathing Propulsion Facilities: The U.S. is distinctly the

leader in this category of facilities. In propulsion wind tunnels
the DOD, through AEDC's 16S and 16T tunnels, and NASA, through
Lewis' 10x10 and 8x6 ft. tunnels, are the leaders. In engine
altitude test facilities, the DOD has the best overall facility in
AEDC's modern Aeropropulsion System Test Facility (ASTF). The
U.S. industry is also very well equipped with a variety of
facilities covering the entire spectrum of engine test
capabilities, where General Electric and Pratt & Whitney are the
leaders. In propulsion components, the U.S. industry is also the
leader with the most comprehensive set of facilities. NASA also
of fers some unique and outstanding capabilities in this area of
propulsions research. The foreign capabilities are concentrated
mostly in engine test facilities at the U.K.'s RAE/Pyestock
(formerly NGTE) Center and France's CEPr at Saclay. Some notable
wind tunnel propulsion capabilities also exist in Canada's

10x20 NRC tunnel, France's S1 tunnel at Modane, and the
Netherlands' DNW complex.

Flight Simulators: Although this survey did not yield as much

information on this category of facilities from foreign sources,
it is the general opinion that the U.S. is significantly in front
of its European counterparts, although some excellent capabilities
are being developed in West Germany and Japan. The premier U.S.
capability exists in industry and NASA. The latter owns the World
Class facilities in motion simulators and some generic R&D flight
decks, while the industry has excellent capabilities across all
categories of simulation facilities.
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5.1 NASA FACILITIES

Of the 72 major NASA aeronautical facilities included in this survey,
with a current replacement value of over $2 billion, 27 (18 wind tunnels,
4 propulsion, and 5 flight simulation facilities) are considered World
Class and 12 are at least of national importance. This combined
capability makes NASA a major force in the Nation's current standing as
the Western World's leader in aeronautical R&. However, as indicated
previously, there are some gaps in this aggregate capability and the
existing facilities are becoming obsolete (particularly the wind tunnels,
which are also NASA's principal strength).

5.1.1 WIND TUNNELS

As a group, NASA's wind tunnels offer a broader range of size and overall
capabilities than any other owner or class of owner (DOD, industry,
academia), foreign or domestic. If there are any gaps in its total
research/test envelope it is in the ability to test large scale
propulsion/airframe systems such as turboprops and V/STOL at properly
simulated speed, temperature, and altitude conditions. Another void is
the absence of a reasonable size supersonic wind tunnel providing good
laminar flow, low turbulence conditions for performing research on low
drag air foil and fuselage designs for future supersonic cruise
transports. These are capabilities currently unavailable anywhere in the
Western World. Just as important as filling these gaps, however, is
preserving the capabilities NASA has. As discussed repeatedly in this
report, there are some premier facilities that unless rehabilitated will
soon lose their preeminent position and become possible embarrassments
rather than showpieces. The following reiterates the most pressing

needs over the next 5 to 10 years:

- General rehabilitation/modernization of the supersonic Unitary
Plan wind tunnels at Ames.
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- Overhaul of the 12 ft. pressure tunnel at Ames to maintain its
high pressure, high Reynolds number capability and improve its
productivity.

- Rehabilitation and upgrade of Lewis' 10x10 and 8x6 ft. propulsion
wind tunnels.

- General overhaul of Langiey's hypersonic capabilities.

- Acquisition of a large, airframe/propulsion integration facility
with altitude simulation capabilities.

- Modifications to or acquisition of a supersonic wind tunnel with
good laminar flow features.

5.1.2 AIRBREATHING PROPULSION

In airbreathing propulsion, NASA's facilities offer good research
capabilities but not of the caliber or preeminence of its wind tunnels.
As stated above, the Nation's premier capabilities reside in industry and
the DOD, certainly for development testing. NASA's strength is in its
research role in aero propulsion, and, except for the needs indicated
earlier and reiterated below, this role is adequately served by its
propulsion wind tunnels, engine and component research facilities.
However, the same problems of aging and obsolescence plague these
facilities as they do the wind tunnels, and some rehabilitation and
modernization just to maintain their current capabilities are necessary.
The most pressing needs appear to be:

- General rehabilitation of the 8x6 ft. wind tunnel.
- Upgrading of the PSL air supply system to provide air flow

capacity just above the marginal levels now available. Also
modifications to permit testing at sea level conditions.
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- Maintaining the High Pressure, Hot Section Facility (HPF) in a
ready status and at full capability.

- Acquiring a large scale turbine research capability.

The last two items underscore the importance of NASA's fundamental
research capability in this area. Although industry and the DOD are well
equipped to perform the necessary development testing on their
facilities, they all look to NASA for the more basic and problem-solving
type of investigations. Internal computational fluid mechanics (ICFM) is
an example where NASA must take the lead; not only through sophisticated
computational tools, but also through the appropriate facilities by which
computational models can be verified.

5.1.3 FLIGHT SIMULATURS

Although NASA's capabilities cover the entire spectrum of R&D flight
simulators, its premier facilities are its large moving base simulators
at Ames and the advanced, ygeneric cockpit simulators at Ames and

Langley. However, rapid obsolescene is the principal nemesis of these
facilities and world preeminence can be maintained only through
continuous upgrading. The advanced cockpit simulators are new, state-of-
the-art facilities, but the larye motion simulators at Ames are older and
due for some rehabilitation and upgrading soon. Given the rapid
advancement of this technology, it may be necessary to consider whether
these large, costly facilities will still be required by the year 2000,
or whether alternative methods of providing some motion and/or visual
cues to the pilot will be available (and sufficient) through other
mechanical or electronic means. If not, the Ames FSAA is already overdue
for some extensive upgrading, and the VMS also may need upygrading within
the next 10 to 15 years.
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5.2

5.2.1

FACILITIES LONG RANGE PLANNING

BUILDING NEW CAPABILITIES

The conclusion has been drawn from the foregoing that the U.S. is the ‘
current leader in aeronautical facilities throughout the free world. It

can also be concluded that except for meeting some new challenges in

civil and military aviation projected for the 21st century, the U.S., as

a whole, is quite well facilitized. Those challenges for which new or
additional capabilities are needed include: supersonic cruise

transports, low-hypersonic military vehicles (fighters and missiles),
high-hypersonic transatmospheric vehicles, all weather rotorcraft, or

V/STOL aircraft. To meet these challenges some new capabilities already

cited or alluded to in the body of this report will be required. These

are a mixture of both "test" as well as "research" capabilities, with the 4
former requiring mostly large expensive facilities and the latter needing

only relative modest investments. The more obvious ones are:

- Llarge scale, high Mach number hypersonic aerodynamic and thermal
structures facility (wind tunnel)

- Low noise, low turbulence supersonic wind tunnel large enough to
test detailed model configurations (4 ft. test section minimum)

- Large scale airframe/propulsion integration wind tunnel with true
altitude simulation

- Larye scale hypersonic propulsion test facility.

Other needs to satisfy the technology requirements of the next century
can be ygleaned from the Aero 2000 study and report referenced earlier.
Deciding or recommending where these facilities should be built
(industry, DOD, or NASA) is beyond the purview of this report and a
subject for much discussion among all the principals concerned. However,
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some observations (even if obvious) that may influence such decisions are
in order:

- Industry is generally in no financial position to underwrite the
large capital investment required of the large test facilities
unless there is an immediate market from which to recover these
investments. Although the term industry is used here
collectively, it actually signifies individual companies concerned
about their individual products and survival, and generally
unlikely to pool their resources to build common facilities
(antitrust laws notwithstanding). Where the payoff is
significantly downstream, as in most of the above examples, it is
very unlikely that the industry will volunteer to build these
facilities, and the task will be left to the Federal Government.

- The DOD owns an extensive set of facilities ranging from the
fundamental research to development type. Should any of the above
facility candidates be built by DOD, it is very likely that AEDC
would be the location. As such, the facility will probably be
used principally for development test purposes rather than for
research. In fact, if current practice is any indication,
research activities may have difficulty competing for time on
these facilities, or be priced out altogether from what are
relatively high user fees.

- If fundamental or applied research is to be the principal thrust
of the above facilities, history and current practice would
support NASA as a better suited owner/operator than the AEDC.

Irrespective of where these facilities are to be built or by whom, a
coordinated process must be followed in arriving at these decisions,
since it is the country as a whole that has the biggest stake. NASA is
currently examining the output from this survey and the Aero 2000
activity to determine in more detail than expressed above, what are the
new capabilities required to support the technology needs of the next
century. Expanding existing capabilities as well as new facilities are
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being considered. This "Long Range Facilities Plan" will focus mainly on
the large (greater than $25 million) budget busters that must be
proyrammed for and properly coordinated and advocated before they can be
successfully budgeted. DOD is proceeding with a parallel effort to
identify these needs from their perspective, and a totally coordinated
“plan" is projected by the end of 1985. The NASA planning process will,
of course, involve the usual coordination and advice from the aviation
industry and various standing advisory groups before this "plan" is
finalized.

5.2.2 MAINTAINING EXISTING CAPABILITIES

Other than examining existing capabilities as possible candidates for
expansion/upgrading to meet some of the new requirements discussed
previously, a serious review must be undertaken to determine which of
those facilities in the total U.S. inventory (not just NASA's) must be
rehabilitated just to maintain their current capabilities. As already
indicated in this report, the majority of the U.S. wind tunnels are
approximately 25 to 30 years old and will be around 40 years old by the
year 2000. As also indicated, the U.S. tunnels are already more antiquated
than many of the European facilities and in need of upgrading. Using the
results of this survey and assessment as a reference point, NASA is
designing a strategy for addressing the anticipated needs of its aging
facilities and incorporating them into their Facilities Long Range Plan
(LRP). This strategyy will be based on the following:

- Identifying only major rehabilitation efforts anticipated to cost
over $10 million each.

- Giving first priority to NASA's World Class facilities, as
assets that the U.S. must protect to retain its world leadership

in this area.

- Determining those national facilities (U.S. Class) that will

continue to be important assets to the Nation and to NASA.
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- Evaluating NASA's fundamental research or "backyard" facilities on

a periodic basis to determine their continuing value to NASA's R&T
programs.

The Tatter will most likely fall outside the $10 million criterion and
rarely be included in the LRP. These as well as the more minor repairs
and rehabilitations will be covered in the annual budget process, wherein
more consideration (and scrutiny) can be given to small projects and to ad
hoc needs requiring immediate attention.

It is understood that the DOD is also addressing this matter in their
parallel effort and will be part of the "coordinated plan" between the
two agencies. In the case of industry's facilities, while part of the
total U.S. inventory, the decision to maintain or to scrap them is
generally based on financial considerations rather than on their value to
the country. As such, they cannot be incorporated into any coordinated
plan, other than the effect their elimination from the national inventory
may have on NASA or DOD decisions concerning their own facilities.

5.2.3 DEACTIVATION OF EXISTING FACILITIES

Whenever the subject of constructing new facilities or rehabilitating old
ones is discussed, the question of deactivating the old ones surfaces.
This is a controversial issue which can draw convincing arguments from
either side. On the one hand, it seems reasonable to expect that as
larger and better facilities are built, those with older or lesser
capabilities can be retired so that the number of facilities in operation
need not continue to proliferate. On the other side is the argument that
a newer, larger facility does not necessarily displace an older, smaller
one, since the former, in all 1ikelihood, will be in high demand by high
priority research or development projects, leaving the fundamental
researcher waiting at the end of a long line with 1ittle 1ikelihood of
using the new facility. Moreover, the larger facilities may offer more
than the researcher needs at a considerably higher operating cost. The
researcher has no alternative but to stay with the smaller or less
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capable facility to pursue his fundamental works. The net result is
usually a tendency to keep both facilities unless the older one is
clearly inferior or unusable.

History indicates that facilities are deactivated for one of the
following principal reasons:

1. Lack of use; no program needs

2. Serious breakdown not worth repairing

3. Facility replaced with newer one

4, Lack of operating funds or too costly

Deactivated facilities are subsequently disposed of or placed in one of
several statuses:

1. Standby: Nonoperational but maintained in working order

2. Mothballed: Preserved but not maintained

3. Surplused: Available for use elsewhere

4, Dismantled: Inoperable, equipment gutted, but basic structure in

place
5. Demolished: Scrapped and removed

Experience also indicates that decisions to shut down facilities are not
normally the result of a long range planning process, but rather made ad
hoc for one of the above reasons, which, over time, act as an effectiQe
mechanism for periodically thinning out the facility ranks.

A review of NASA's recent history discloses that over the 14-year

period between 1970 and 1984, about 70 medium and small aeronautical
facilities were deactivated, of which 90% were for programmatic reasons
and the other 10% because of age. Only 20% were then placed on standby
and about 70% were dismantled or demolished, consistent with the
judgement that the program needs had disappeared and no further use for
these facilities was projected. These statistics support the belief that
a "natural selection" process is effectively controlling the
proliferation or needless retention of the smaller facilities.
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The very large National or World Class facilities present a different
situation, since the same "natural selection" process reflected above
does not operate on them. The reasons are obvious:

- Because of their importance and size they receive constant
scrutiny and attention. They neither proliferate nor waste away
unnoticed.

- Because of their broad range of capabilities and use, program
demands do not normally disappear overnight, if at all. Their
program base is usually very large. Furthermore, once in place,
these facilities become natural magnets for people and research
jdeas, thereby driving programs rather than the other way around;
in effect perpetuating their own existence.

- Their importance usually grants them top priority for upgrading
and rehabilitation. Eliminating these facilities because of age,
breakdowns, or obsolescence becomes a very deliberate and involved
decision, one which is seldom projected very far into the future.

For these large facilities the decision to retain or deactivate is
principally based on anticipated future needs -- at least for government
R&D facilities. But since this vision is generally myopic, the capital
investment is large, and there is always the optimism that upgradings and
rehabilitation to stem obsolescence are possible, there is a general
reluctance to take that irreversible step until time itself becomes the
deciding factor. This is not to imply that the large facilities are
immune from deactivation, but that preparing a long range plan for this
eventuality is extremely difficult if not impossible, and in any event
probably indefensible.

The situation in industry is somewhat different since, as expected, the
principal consideration is a financial one, particularly in product
development. For these types of facilities the develppment/production
schedule usually dictates the lifetime of a particular facility and its
approximate deactivation time frame. On the other hand, for their more
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generic application or basic research facilities and laboratories,
industry's situation is probably very similar to that of the Federal
laboratories and encounters the same difficulties in preparing long range
facility deactivation plans.

In summary:

- There exists an unstructured, but yet effective natural selection
process for weeding out medium and small facilities.

- The large facilities receive sufficient scrutiny through a more
formal decision-making process.

- Deactivation decisions are usually made because of
programmatic/funding reasons, although more so for the smaller
than the larger facilities.

- These decisions are usually ad hoc and near term rather than
through long range planning.

- Industry decisions are principally based on financial/product
considerations rather than long term national needs. These are
left up to government laboratories. Decisions on basic research
facilities are probably no different than for government
laboratories.

- Tying facilities deactivation to facilities long range plans can
be useful only where replacement facilities in the long range plan
are involved. In such instances, full coordination across all
government agencies is necessary.
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5.2.4 TEST FACILITIES VERSUS NUMERICAL SIMULATION

Another issue that must be addressed whenever the subject of facilities
long range planning is discussed is whether large test facilities will
continue to play an essential role in future aircraft development, or
whether the science (art) of numerical simulation will make these test
facilities unnecessary.

Assuming the continued rapid progress anticipated in the science of
simulation, aided by the ultra fast, high capacity computers and their
sophisticated software, it is still considered very doubtful that this
level of sophistication will reach the point by the year 2000 where
accurate simulation of external flows over complex shapes will be
possible. Even less probable is the accurate simulation of internal
flows through complex turbofan/turbojet engines. As such, the need for
large wind tunnels and engine test facilities over this time frame is not
seriously threatened by numerical simulation facilities.

The longer range effect is another matter. Simple extrapolation based on
current developments plus a generous measure of optimism lTeads to a
conclusion that these new techniques will become a powerful force in
future engine and aircraft designs and development. This is an important
consideration, since the large and expensive test facilities that may be
proposed and built to meet the technology challenges facing the

21st century could be around for 30 to 40 years if past history is any
indication. Decisions on whether to build these facilities will have to
depend heavily on the anticipated capabilities of simulators such as the
Numerical Aerodynamic Simulation (NAS) facility at Ames.

The current thinking into the next 15 to 25 years leans in the following
direction:

- Numerical simulation techniques and facilities will be used to
perform much of the initial engineering design of future vehicle
configurations, and to perform many of the necessary iterations to
accommodate options or changes to aerodynamic configurations,
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etc., before test models are built. Much of the trial and error

iterations now performed in wind tunnels with repeated alterations
to expensive models will be avoided.

- Large test facilities will be used to check out large or full
scale prototypes before flight tests. Considering the high risk
in lives and very expensive flight hardware, it is doubtful that
this vital step in the development and flight test sequence will
ever be completely eliminated, nor the corresponding test
facilities.

- Lastly, there will also be a continuing need for the basic
research facilities where the fundamental laws and behavior can be
investigated and translated into the algorithms used by the
simulators. This code development/verification relationship
between the small facilities or laboratories and numerical

simulators will probably continue until a substantial data base is
gathered.

Figure 18 summarizes the above relationships graphically, highlighting

the centerpiece role of numerical simulators with respect to research

and test facilities. The opinion is that numerical simulation techniques
will replace the more commonplace facilities (mid-size wind tunnels)

rather than the smaller or larger ones. This has a crucial implication for
the majority of wind tunnels in existence today and the need for

retaining them into the next century.
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